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Setting

* Non-backtracking random walk on a dynamical graph.

* Graph initially drawn according to the configuration model.

* Graph evolution described by rewiring of edges.
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* Degree sequence and graph evolution subject to mild regularity conditions.

 Degree sequence: sparse, tree-like, degrees = 2.

* Graph evolution: “dynamical self-avoidance”, lack of bias for rewiring.



Link between
the dynamic and static mixing time

 Suppose that regularity conditions hold and t = O(log n). Then the following
holds with high probability in x and &:

@dyn(z) =P(z > 1) D30 + op(1) .

« Random variable 7 is the first time the random walk steps over a rewired edge.



Proof idea

Coupling between the dynamic and static situation

* As long as the random walk does not step over an edge that has changed
compared to the initial graph,

the random walk on the dynamic graph
before stepping over a rewired edge
IS essentially the same as
the random walk on the initial graph.

 \When the dynamic random walk steps over a rewired edge the walk on the
static initial graph makes a random jump.

* Situations where this approximation fails in logarithmic time (or faster) are
rare, due to regularity conditions.



Concrete examples

General approach

. Recall: @dyn(t) = P(7 > 1) @Stat(t) + O (1)

. D 5(0)-term:

 We use the results of Ben-Hamou and Salez [1]. This introduces more strict
conditions on the degrees than required by the coupling argument.

« P(7 > t)-term: precise combinatorial estimates.

e |dea: given the rewiring mechanism, count the opportunities when the
random walk can step over a rewired edge.

[1] Anna Ben-Hamou. Justin Salez. "Cutoff for nonbacktracking random walks on sparse random graphs." Ann. Probab. 45(3) 1752-1770, May 2017.



Concrete examples

Location-dependents sets of edges

- Local (r, = 1)
+  —Nearwithr, =2

+  +|—Near withr, = 3
» Near-set around half-edge X

o Set of edges that the NBRW can traverse

in r, steps starting from X, given that the
graph remains unchanged.

e If r, = 1, we call it a local-set.

e If r, = diam(G), we call it the global-set



Concrete examples

Overview of results
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Trichotomy of Diyfn(t) for
local-to-global rewiring.
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Trichotomy of Diygl(t) for
global-to-global rewiring.
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Hexachotomy of Diygn(t) for near-to-global rewiring.
The red line marks a change in the shape of the curve.



Concrete examples
Global-to-global

 Rewiring happens “everywhere”.

(1) If lim,_ oo apn(logn)? = oo, then
Di?%n(Lc/\/osz) = op(1) + e /2 c¢ 0, 00).

(2) If lim,_ o0 an(logn)? = v € (0,00), then

DY (Lelogn]) = o0s(1) + -

3) If lim,_ o apn(logn)? = 0, then
(3) g

Dién(Lclog n|) = o0s(1) + «

One parameter: «,
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Regime (3): (1.26).



Concrete examples

Local-to-global

 Rewiring happens “right under my feet”. ,\ One parameter: a,

(1) If limy, o0 ap logm = 00, then Dy g \

DY (le/an]) = 0s(1) + 7€, c€[0,00).
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Regime (1): (1.15).
(2) If limy, o0 o logn = v € (0, 00), then egime (1): (1.15)
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(3) If limy, 00 tplogn = 0, then Regime (2): (1.16).
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Regime (3): (1.17).



Concrete examples

Near-to-global

 Rewiring happens in the near-set -> shortcuts. Two parameters: «,, 1.

 Non-markovian, interpolates between the previous two.

d i Case 2(b):
Ddyn (4) \ - Cross-over in the decay of 29"(¢)

t\/ﬁ % o t/logn
Regime 1(a): (1.18). Regime 2(b): (1.21).
(2) If limy, o0 apryplogn =~ € (0,00) and
Ddyn(t) Ddyn(t)
(b) lim, 00 anr> = B € (0,00), then
1 t/’l“;, e t/ log>n ( e—(70)2/257 c € [0,8/7],
| DY (lelogn]) = 0:(1) + e~ =/2 ce (8/v,c.),

Regime 1(b): (1.19). Regime 2(c): (1.22). 0, ¢ € (¢4, 00).
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Regime 1(c): (1.20). Regime 3(c): (1.23).



Take-away messages

 General framework that ties together mixing properties of non-
backtracking random walks on dynamic and static configuration

model graphs.

* Applications of this framework to concrete models:

* Global-to-global:

* | ocal-to-global:

* Near-to-global:

previously observed trichotomy,
this time established under weaker assumptions.

trichotomy similar to global-to-global.

hexachotomy (six-way split) in mixing profiles,
a Kink in the mixing profile in one of the regimes.



Thank you for your attention.




