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Setting
• Non-backtracking random walk on a dynamical graph.


• Graph initially drawn according to the configuration model. 

• Graph evolution described by rewiring of edges. 
 
 
 
 
 

• Degree sequence and graph evolution subject to mild regularity conditions. 

• Degree sequence: sparse, tree-like, degrees ≥ 2.


• Graph evolution: “dynamical self-avoidance”, lack of bias for rewiring.



Link between  
the dynamic and static mixing time
• Suppose that regularity conditions hold and . Then the following 

holds with high probability in  and :


• Random variable  is the first time the random walk steps over a rewired edge. 

t = O(log n)
x ξ

τ

𝒟dyn
x,ξ (t) = ℙ(τ > t) 𝒟stat

x,ξ (t) + oℙ(1) .



Proof idea
Coupling between the dynamic and static situation
• As long as the random walk does not step over an edge that has changed 

compared to the initial graph,  
 
 
 
 
 
 
 

• When the dynamic random walk steps over a rewired edge the walk on the 
static initial graph makes a random jump.


• Situations where this approximation fails in logarithmic time (or faster) are 
rare, due to regularity conditions.

the random walk on the dynamic graph 
before stepping over a rewired edge  

is essentially the same as  
the random walk on the initial graph. 



Concrete examples
General approach

• Recall:		 


• -term:


• We use the results of Ben-Hamou and Salez [1]. This introduces more strict 
conditions on the degrees than required by the coupling argument.


• -term: precise combinatorial estimates.


• Idea: given the rewiring mechanism, count the opportunities when the 
random walk can step over a rewired edge.

𝒟dyn
x,ξ (t) = ℙ(τ > t) 𝒟stat

x,ξ (t) + oℙ(1)
𝒟stat

x,ξ (t)

ℙ(τ > t)

[1] Anna Ben-Hamou. Justin Salez. "Cutoff for nonbacktracking random walks on sparse random graphs." Ann. Probab. 45(3) 1752-1770, May 2017.



Concrete examples
Location-dependents sets of edges

• Near-set around half-edge 


• Set of edges that the NBRW can traverse 
in  steps starting from , given that the 
graph remains unchanged.


• If , we call it a local-set. 

• If , we call it the global-set

X

rn X

rn = 1
rn = diam(G)

|           – Local ( ) 
| + |      – Near with  
| + | + | – Near with 

rn = 1
rn = 2
rn = 3



Concrete examples
Overview of results
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The link between the mixing times
On a dynamic graph with initial state ⇠, consider a non-backtracking random walk (NBRW) starting from the half-edge x.
Under mild regularity conditions, we show that with high probability in the initial con�guration (x, ⇠), as n ! 1,

Ddyn
x,⇠ (t) = P(⌧ > t)Dstat

x,⇠ (t) + oP(1),
where:
• ⌧ is the �rst time the random walk steps over an edge that has been a�ected by the graph dynamics.
•Ddyn

x,⇠ (t),Dstat
x,⇠ (t) are the total variation distances from the uniform distribution in the dynamic and static case, respectively.

Graphs and their dynamics
• Initial graph is sampled from the con�guration model.
•Kt-to-Lt rewiring dynamics:
– Sample edges fromKt and break them in � halves.
– Sample and break the same number of edges from Lt.
– Create edges (k, l) from half-edges k 2 Kt

l 2 Lt
chosen u.a.r.

• Sets of edges: local – under the walker, global – entire
graph, near(rn) – NBRW-distance from the walker< rn .

Red – near(�) ⌘ local,
near(�) [ Blue – near(�),
near(�) [ Orange – near(�),
near(�) [ Green – near(�),
near(�) [ Purple – near(�)⌘ global.

Regularity conditions & assumptions
•Graph regularity:
sparse, locally tree-like, vertex degrees at least 2.

•Regularity of dynamics:
dynamical self-avoidance, ⌧ almost independent of the
�ne details of the path, rewiring has no bias.

• Control over Dstat
x,⇠ (t): we use assumptions and results of

Ben-Hamou and Salez (DOI: ��.����/��-AOP����).

Mathematical ideas
• Proof of the linking theorem
A coupling between the static and the dynamic setting.

• Computation of P(⌧ > t)

– {local, global}-to-global: counting argument;
– near-to-global: counting argument and a bound on the
e�ect of shortcuts.

Trichotomies: {local, global}-to-global dynamics
• � parameter: ↵n – rewiring rate

t↵n

Ddyn(t)

No cut-o�

c⇤ t/ log n

Ddyn(t)

One-sided cut-o�

c⇤ t/ log n

Ddyn(t)

Two-sided cut-o�

Trichotomy ofDdyn
x,⇠ (t) for

local-to-global rewiring.

t
p

↵n

Ddyn(t)

No cut-o�

c⇤ t/ log n

Ddyn(t)

One-sided cut-o�

c⇤ t/ log n

Ddyn(t)

Two-sided cut-o�

Trichotomy ofDdyn
x,⇠ (t) for

global-to-global rewiring.

Hexachotomy: near(rn)-to-global dynamics
• � parameters: ↵n – rewiring rate, rn – rewiring range

t
p

↵n

Ddyn(t)

No cut-o�

c⇤ t/ log n�
�

Ddyn(t)

One-sided cut-o� with a crossover

1 t/rn

Ddyn(t)

Crossover, but without a cut-o�

c⇤ t/ log n

Ddyn(t)

One-sided cut-o�

t↵nrn

Ddyn(t)

No cut-o�

c⇤ t/ log n

Ddyn(t)

Two-sided cut-o�

Hexachotomy ofDdyn
x,⇠ (t) for near-to-global rewiring.

The red line marks a change in the shape of the curve.

Shortcut

NBRW path

Example of a shortcut
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• Control over Dstat
x,⇠ (t): we use assumptions and results of
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• Proof of the linking theorem
A coupling between the static and the dynamic setting.

• Computation of P(⌧ > t)

– {local, global}-to-global: counting argument;
– near-to-global: counting argument and a bound on the
e�ect of shortcuts.

Trichotomies: {local, global}-to-global dynamics
• � parameter: ↵n – rewiring rate

t↵n

Ddyn(t)

No cut-o�

c⇤ t/ log n

Ddyn(t)

One-sided cut-o�

c⇤ t/ log n

Ddyn(t)

Two-sided cut-o�

Trichotomy ofDdyn
x,⇠ (t) for

local-to-global rewiring.

t
p

↵n

Ddyn(t)

No cut-o�

c⇤ t/ log n

Ddyn(t)

One-sided cut-o�

c⇤ t/ log n

Ddyn(t)

Two-sided cut-o�

Trichotomy ofDdyn
x,⇠ (t) for

global-to-global rewiring.

Hexachotomy: near(rn)-to-global dynamics
• � parameters: ↵n – rewiring rate, rn – rewiring range

t
p

↵n

Ddyn(t)

No cut-o�

c⇤ t/ log n�
�

Ddyn(t)

One-sided cut-o� with a crossover

1 t/rn

Ddyn(t)

Crossover, but without a cut-o�

c⇤ t/ log n

Ddyn(t)

One-sided cut-o�

t↵nrn

Ddyn(t)

No cut-o�

c⇤ t/ log n

Ddyn(t)

Two-sided cut-o�

Hexachotomy ofDdyn
x,⇠ (t) for near-to-global rewiring.

The red line marks a change in the shape of the curve.
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NBRW path

Example of a shortcut



Concrete examples
Global-to-global
• Rewiring happens “everywhere”. 		 	 One parameter: αn

(b) limn!1 ↵nr2n = � 2 (0,1), then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

8
<

:

e
�(�c)2/2� , c 2 [0,�/�],
e
�(2�c��)/2, c 2 (�/�, c⇤),
0, c 2 (c⇤,1).

(1.21)

(c) limn!1 ↵nr2n = 0, then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

⇢
e
��c, c 2 (0, c⇤),
0, c 2 (c⇤,1).

(1.22)

(3) If limn!1 ↵nrn log n = 0 and

(c) limn!1 ↵nr2n = 0, then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

⇢
1, c 2 [0, c⇤),
0, c 2 (c⇤,1).

(1.23)

Corollary 1.9 (Scaling of dynamic mixing time for global-to-global rewiring).
Consider the global-to-global rewiring defined in Section 4.4. Suppose that limn!1 ↵n = 0 and

t = O(log n). Subject to Condition 3.1(R1), Condition B.1 and (B.3), the following hold whp

in x and ⇠:

(1) If limn!1 ↵n(log n)2 = 1, then

Ddyn
x,⇠

�
bc/

p
↵nc

�
= oP(1) + e

�c
2
/2, c 2 [0,1). (1.24)

(2) If limn!1 ↵n(log n)2 = � 2 (0,1), then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

⇢
e
��c

2
/2, c 2 [0, c⇤),

0, c 2 (c⇤,1).
(1.25)

(3) If limn!1 ↵n(log n)2 = 0, then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

⇢
1, c 2 [0, c⇤),
0, c 2 (c⇤,1).

(1.26)

Note that the dynamic mixing time exhibits a trichotomy that distinguishes between fast

dynamics (regime (1)), moderate dynamics (regime (2)) and slow dynamics (regime (3)). There
is no cut-off for fast dynamics, one-sided cut-off (at c = c⇤) for moderate dynamics, and two-

sided cut-off (at c = c⇤) for slow dynamics. For near-to-global rewiring there are several
subregimes (regimes (2)(a), (3)(a) and (3)(b) are not relevant). See Figs. 1–3 for the various
scaling shapes (where the indices x and ⇠ are suppressed).

Remark 1.10 (Role of Condition 3.5). Corollaries 1.7–1.9 do not mention Condition 3.5
explicitly, even though this is needed for Theorem 1.4. The reason is that the three rewiring
mechanisms under consideration satisfy Condition 3.5, as shown in Section 4. ⌅
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t↵n

Ddyn(t)

Regime (1): (1.15).

c⇤ t/ log n

Ddyn(t)

Regime (2): (1.16).

c⇤ t/ log n

Ddyn(t)

Regime (3): (1.17).

Figure 1: Plot of Ddyn
(t) for local-to-global

rewiring (Corollary 1.7).

t
p

↵n

Ddyn(t)

Regime (1): (1.24).

c⇤ t/ log n

Ddyn(t)

Regime (2): (1.25).

c⇤ t/ log n

Ddyn(t)

Regime (3): (1.26).

Figure 2: Plot of Ddyn
(t) for global-to-global

rewiring (Corollary 1.9).

t
p

↵n

Ddyn(t)

Regime 1(a): (1.18).

c⇤ t/ log n�
�

Ddyn(t)

Regime 2(b): (1.21).

1 t/rn

Ddyn(t)

Regime 1(b): (1.19).

c⇤ t/ log n

Ddyn(t)

Regime 2(c): (1.22).

t↵nrn

Ddyn(t)

Regime 1(c): (1.20).

c⇤ t/ log n

Ddyn(t)

Regime 3(c): (1.23).

Figure 3: Plot of Ddyn
(t) for near-to-global rewiring (Corollary 1.8). The red lines indicate a

crossover in the shape of the curve.
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Concrete examples
Local-to-global
• Rewiring happens “right under my feet”. 	 	 	 One parameter: αn

Theorem 1.6 (Scaling of static mixing time).
Subject to (B.3) and Condition B.1, the following holds whp in x and ⇠:

Dstat
x,⇠

(t) =

⇢
1� oP(1), if t = bc log nc, c < c⇤,
oP(1), if t = bc log nc, c > c⇤,

(1.14)

where c⇤ 2 (0,1) is the constant defined in (B.3).

Combining Theorems 1.4–1.6 we end up with the following results:

Corollary 1.7 (Scaling of dynamic mixing time for local-to-global rewiring).
Consider the local-to-global rewiring defined in Section 4.2. Suppose that limn!1 ↵n = 0 and

t = O(log n). Subject to Condition 3.1(R1), Condition B.1 and (B.3), the following hold whp

in x and ⇠:

(1) If limn!1 ↵n log n = 1, then

Ddyn
x,⇠

�
bc/↵nc

�
= oP(1) + e

�c, c 2 [0,1). (1.15)

(2) If limn!1 ↵n log n = � 2 (0,1), then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

⇢
e
��c, c 2 [0, c⇤),
0, c 2 (c⇤,1).

(1.16)

(3) If limn!1 ↵n log n = 0, then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

⇢
1, c 2 [0, c⇤),
0, c 2 (c⇤,1).

(1.17)

Corollary 1.8 (Scaling of dynamic mixing time for near-to-global rewiring).
Consider the near-to-global rewiring defined in Section 4.3. Suppose that limn!1 ↵n = 0 and

t = O(log n). Subject to Condition 3.1(R1), Condition 3.6, Condition B.1 and (B.3), the

following hold whp in x and ⇠:

(1) If limn!1 ↵nrn log n = 1 and

(a) limn!1 ↵nr2n = 1, then

Ddyn
x,⇠

�
bc/

p
↵nc

�
= oP(1) + e

�c
2
/2, c 2 [0,1). (1.18)

(b) limn!1 ↵nr2n = � 2 (0,1), then

Ddyn
x,⇠

�
bc rnc

�
= oP(1) +

⇢
e
��c

2
/2, c 2 (0, 1],

e
��(2c�1)/2, c 2 (1,1).

(1.19)

(c) limn!1 ↵nr2n = 0, then

Ddyn
x,⇠

�
bc/↵nrnc

�
= oP(1) + e

�c, c 2 [0,1). (1.20)

(2) If limn!1 ↵nrn log n = � 2 (0,1) and

6

t↵n

Ddyn(t)

Regime (1): (1.15).

c⇤ t/ log n
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Regime (2): (1.16).
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Figure 1: Plot of Ddyn
(t) for local-to-global

rewiring (Corollary 1.7).
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Figure 3: Plot of Ddyn
(t) for near-to-global rewiring (Corollary 1.8). The red lines indicate a

crossover in the shape of the curve.
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Concrete examples
Near-to-global
• Rewiring happens in the near-set -> shortcuts.	 Two parameters: , .


• Non-markovian, interpolates between the previous two.  
	 	 	

αn rn

t↵n

Ddyn(t)

Regime (1): (1.15).

c⇤ t/ log n

Ddyn(t)

Regime (2): (1.16).

c⇤ t/ log n

Ddyn(t)

Regime (3): (1.17).

Figure 1: Plot of Ddyn
(t) for local-to-global

rewiring (Corollary 1.7).

t
p

↵n

Ddyn(t)

Regime (1): (1.24).

c⇤ t/ log n

Ddyn(t)

Regime (2): (1.25).

c⇤ t/ log n

Ddyn(t)

Regime (3): (1.26).

Figure 2: Plot of Ddyn
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Figure 3: Plot of Ddyn
(t) for near-to-global rewiring (Corollary 1.8). The red lines indicate a

crossover in the shape of the curve.
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(2) If limn!1 ↵nrn log n = � 2 (0,1) and

(b) limn!1 ↵nr2n = � 2 (0,1), then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

8
<

:

e
�(�c)2/2� , c 2 [0,�/�],
e
�(2�c��)/2, c 2 (�/�, c⇤),
0, c 2 (c⇤,1).

(1.21)

(c) limn!1 ↵nr2n = 0, then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

⇢
e
��c, c 2 (0, c⇤),
0, c 2 (c⇤,1).

(1.22)

(3) If limn!1 ↵nrn log n = 0 and

(c) limn!1 ↵nr2n = 0, then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

⇢
1, c 2 [0, c⇤),
0, c 2 (c⇤,1).

(1.23)

Corollary 1.9 (Scaling of dynamic mixing time for global-to-global rewiring).
Consider the global-to-global rewiring defined in Section 4.4. Suppose that limn!1 ↵n = 0 and

t = O(log n). Subject to Condition 3.1(R1), Condition B.1 and (B.3), the following hold whp

in x and ⇠:

(1) If limn!1 ↵n(log n)2 = 1, then

Ddyn
x,⇠

�
bc/

p
↵nc

�
= oP(1) + e

�c
2
/2, c 2 [0,1). (1.24)

(2) If limn!1 ↵n(log n)2 = � 2 (0,1), then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

⇢
e
��c

2
/2, c 2 [0, c⇤),

0, c 2 (c⇤,1).
(1.25)

(3) If limn!1 ↵n(log n)2 = 0, then

Ddyn
x,⇠

�
bc log nc

�
= oP(1) +

⇢
1, c 2 [0, c⇤),
0, c 2 (c⇤,1).

(1.26)

Note that the dynamic mixing time exhibits a trichotomy that distinguishes between fast

dynamics (regime (1)), moderate dynamics (regime (2)) and slow dynamics (regime (3)). There
is no cut-off for fast dynamics, one-sided cut-off (at c = c⇤) for moderate dynamics, and two-

sided cut-off (at c = c⇤) for slow dynamics. For near-to-global rewiring there are several
subregimes (regimes (2)(a), (3)(a) and (3)(b) are not relevant). See Figs. 1–3 for the various
scaling shapes (where the indices x and ⇠ are suppressed).

Remark 1.10 (Role of Condition 3.5). Corollaries 1.7–1.9 do not mention Condition 3.5
explicitly, even though this is needed for Theorem 1.4. The reason is that the three rewiring
mechanisms under consideration satisfy Condition 3.5, as shown in Section 4. ⌅
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Case 2(b):

• Cross-over in the decay of 𝒟dyn(t)



Take-away messages
• General framework that ties together mixing properties of non-

backtracking random walks on dynamic and static configuration 
model graphs.


• Applications of this framework to concrete models: 

• Global-to-global: 	 previously observed trichotomy, 
	 	 	 this time established under weaker assumptions.


• Local-to-global:	 trichotomy similar to global-to-global.


• Near-to-global:	 hexachotomy (six-way split) in mixing profiles, 
	 	 	 a kink in the mixing profile in one of the regimes.



Thank you for your attention.


