

Universiteit Leiden

NETWORKS is a project of University of Amsterdam Eindhoven University of Technology Leiden University Center for Mathematics and Computer Science (CWI)

Linking the mixing times of random walks on static and dynamic random graphs **Oliver Nagy**

Joint work with Luca Avena, Hakan Güldaş, Frank den Hollander (UL) and **Remco van der Hofstad** (TU/e)

June 28, 2023 **INFORMS APS Conference**, Nancy

Setting

- **Non-backtracking** random walk on a dynamical graph.
- Graph initially drawn according to the **configuration model**.

- - **Degree sequence:** sparse, tree-like, degrees ≥ 2 .
 - Graph evolution: "dynamical self-avoidance", lack of bias for rewiring.

Degree sequence and graph evolution subject to mild regularity conditions.

Link between the dynamic and static mixing time

• Suppose that regularity conditions hold and $t = O(\log n)$. Then the following holds with high probability in x and ξ :

$$\mathscr{D}_{x,\xi}^{\text{dyn}}(t) = \mathbb{P}(\tau > t) \ \mathscr{D}_{x,\xi}^{\text{stat}}(t) + o_{\mathbb{P}}(1) \,.$$

• Random variable au is the first time the random walk steps over a rewired edge.

Proof idea Coupling between the dynamic and static situation

compared to the initial graph,

the random walk on the dynamic graph before stepping over a rewired edge is essentially the same as

the random walk on the initial graph.

- static initial graph makes a random jump.
- rare, due to regularity conditions.

• As long as the random walk does not step over an edge that has changed

When the dynamic random walk steps over a rewired edge the walk on the

• Situations where this approximation fails in logarithmic time (or faster) are

Concrete examples General approach

• Recall:

$$\mathscr{D}_{x,\xi}^{\mathrm{dyn}}(t) = \mathbb{P}($$

•
$$\mathscr{D}_{x,\xi}^{\text{stat}}(t)$$
-term:

- conditions on the degrees than required by the coupling argument.
- $\mathbb{P}(\tau > t)$ -term: precise combinatorial estimates.
 - random walk can step over a rewired edge.

[1] Anna Ben-Hamou. Justin Salez. "Cutoff for nonbacktracking random walks on sparse random graphs." Ann. Probab. 45(3) 1752-1770, May 2017.

$(\tau > t) \mathscr{D}_{x,\xi}^{\text{stat}}(t) + o_{\mathbb{P}}(1)$

• We use the results of Ben-Hamou and Salez [1]. This introduces more strict

• Idea: given the rewiring mechanism, count the opportunities when the

Concrete examples Location-dependents sets of edges

- Near-set around half-edge X
 - Set of edges that the NBRW can traverse in r_n steps starting from X, given that the graph remains unchanged.
 - If $r_n = 1$, we call it a **local-set**.
 - If $r_n = \operatorname{diam}(G)$, we call it the global-set

Cońcrete examples

Overview of results

Concrete examples Global-to-global

• Rewiring happens "everywhere".

If $\lim_{n\to\infty} \alpha_n (\log n)^2 = \infty$, then $\mathcal{D}^{dyn}(t)$ (1)

 $\mathcal{D}_{x,\xi}^{\mathrm{dyn}}(\lfloor c/\sqrt{\alpha_n} \rfloor) = o_{\mathbb{P}}(1) + e^{-c^2/2}, \quad c \in [0,\infty). \quad t\alpha_n$

(2) If $\lim_{n\to\infty} \alpha_n (\log n)^2 = \gamma \in (0,\infty)$, then \uparrow $\mathcal{D}_{x,\xi}^{\mathrm{dyn}}(\lfloor c \log n \rfloor) = o_{\mathbb{P}}(1) + \begin{cases} e^{-\gamma c^2/2}, & c \in [0, c_*), \\ 0, & c \in (c_*, \infty) \end{cases}$

(3) If
$$\lim_{n\to\infty} \alpha_n (\log n)^2 = 0$$
, then
$$\mathcal{D}_{x,\xi}^{\operatorname{dyn}}(\lfloor c \log n \rfloor) \stackrel{\mathcal{D}}{=} o_{\mathbb{P}}^{\operatorname{dyn}(t)}(1) + \begin{cases} 1, & c \\ 0, & c \end{cases}$$

 C_*

Regime (3): (1.26).

Concrete examples Local-to-global

Rewiring happens "right under my feet".

If $\lim_{n\to\infty} \alpha_n \log n = \infty$, then

 $\mathcal{D}_{x,\mathcal{E}}^{\mathrm{dyn}}(\lfloor c/\alpha_n \rfloor) = o_{\mathbb{P}}(1) + \mathrm{e}^{-c}, \quad c \in [0,\infty).$

If $\lim_{n\to\infty} \alpha_n \log n = \gamma \in (0,\infty)$, then (2)

$$\mathcal{D}_{x,\xi}^{\mathrm{dyn}}(\lfloor c\log n \rfloor) = o_{\mathbb{P}}(1) + \left\{ \right.$$

(3)If $\lim_{n\to\infty} \alpha_n \log n = 0$, then

$$\mathcal{D}_{x,\xi}^{\mathrm{dyn}}(\lfloor c\log n \rfloor) = o_{\mathbb{P}}(1) + \Big\{$$

Regime (3): (1.17).

Goncrete examples Near-to-global $\xrightarrow{t/\log n}$

 c_*

 $t / \log n$

- Rewiring happens in the near-set -> shortcuts.
- Non-markovian, interpolates between the previous two.

Regime 1(c): (1.20).

Regime 3(c): (1.23).

Two parameters: α_n , r_n .

Take-away messages

- General framework that ties together mixing properties of nonbacktracking random walks on dynamic and static configuration model graphs.
- Applications of this framework to concrete models:
 - Global-to-global:
 - previously observed trichotomy, this time established under weaker assumptions.
 - Local-to-global:
 - Near-to-global:
- trichotomy similar to global-to-global.
- hexachotomy (six-way split) in mixing profiles, a kink in the mixing profile in one of the regimes.

Thank you for your attention.