

Mixing of fast random walks on dynamic random permutations

Oliver Nagy

Joint project with:

Luca Avena (Florence), Remco van der Hofstad (Eindhoven), Frank den Hollander (Leiden).

Mark Kac seminar, November 3, 2023; Utrecht

Mixing profile zoo

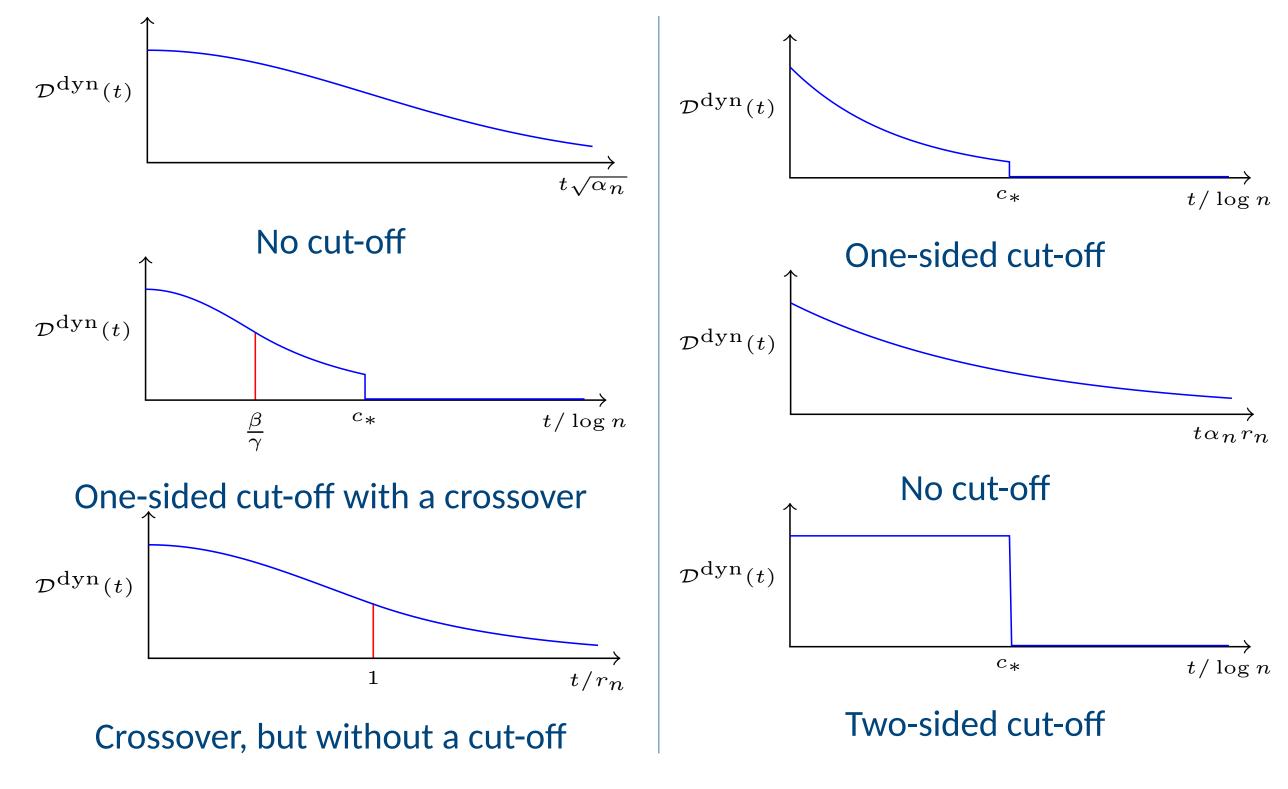
How does the mixing profile of a random walk on a dynamic random graph

$$\mathcal{D}_{n}^{\nu_{0}}(t) = \|\mu(t) - \mu^{\text{stat}}\|_{\text{TV}} \in [0,1]$$

 $t/\log n$

 $t/\log n$

evolve in time?



Model

Underlying geometry: Dynamic permutation

- Fix $n \in \mathbb{N}$ and define the sequence $\left(\Pi_n(t)\right)_{t=0}^{\infty}$ such that:
 - $\Pi_n(0) = \mathrm{Id} \in S_n$
 - $\forall t \geq 1: \Pi_n(t) = \Pi_n(t-1) \circ (a,b),$ where (a,b) is transposition chosen according to a given rule
- Dynamic rules under consideration:
 - Transpositions of elements on different cycles picked u.a.r. (coagulation-only)
 - Transpositions chosen u.a.r. (coagulation-fragmentation)

Model

Stochastic process: Infinite-speed random walk (ISRW)

Definition 1.6 [Infinite-speed random walk on Π_n] Fix Π_n and an element $v_0 \in [n]$. Recall that $\gamma_v(\Pi_n(t))$ is the cycle of $\Pi_n(t)$ that contains v. The infinite-speed random walk (ISRW) starting from v_0 is the random process $X_n^{v_0} = (X_n^{v_0}(t))_{t \in \mathbb{N}_0}$ on [n] with initial distribution given by

$$\mu^{X_n^{v_0}}(0) = \left(\mu_w^{X_n^{v_0}}(0)\right)_{w \in [n]},\tag{1.4}$$

where

$$\mu_w^{X_n^{v_0}}(0) = \begin{cases} \frac{1}{|\gamma_w(\Pi_n(0))|}, & w \in \gamma_{v_0}(\Pi_n(0)), \\ 0, & w \notin \gamma_{v_0}(\Pi_n(0)), \end{cases}$$
(1.5)

and with distribution at time $t \in \mathbb{N}$ given by

$$\mu^{X_n^{v_0}}(t) = \left(\mu_w^{X_n^{v_0}}(t)\right)_{w \in [n]},\tag{1.6}$$

where

$$\mu_w^{X_n^{v_0}}(t) = \frac{1}{|\gamma_w(\Pi_n(t))|} \sum_{u \in \gamma_w(\Pi_n(t))} \mu_u^{X_n^{v_0}}(t-1). \tag{1.7}$$

Model

Example: ISRW on a dynamic permutation

Id
$$\circ(1,3)$$
 $\circ(1,3)$ $\circ(1,2)$ $\circ(3,2)$ $\circ(1,2)$

$$\downarrow^{1 \equiv v_{0}} 2 \quad 3 \quad \downarrow^{1} \quad 2 \quad 3 \quad \downarrow^{1}$$

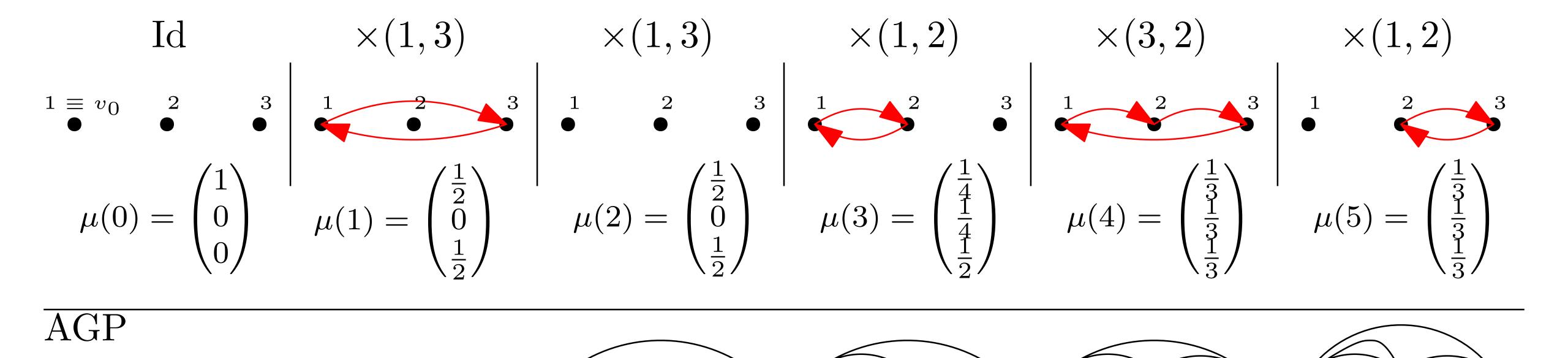
Associated graph process

Definition 2.1 [Graph process associated with Π_n] Let $\Pi_n = (\Pi_n(t))_{t=0}^{t_{\text{max}}}$ with $t_{\text{max}} \in \mathbb{N} \cup \{\infty\}$ be a dynamic permutation starting for the identity permutation. Construct the associated graph process, denoted by A_{Π_n} , as follows:

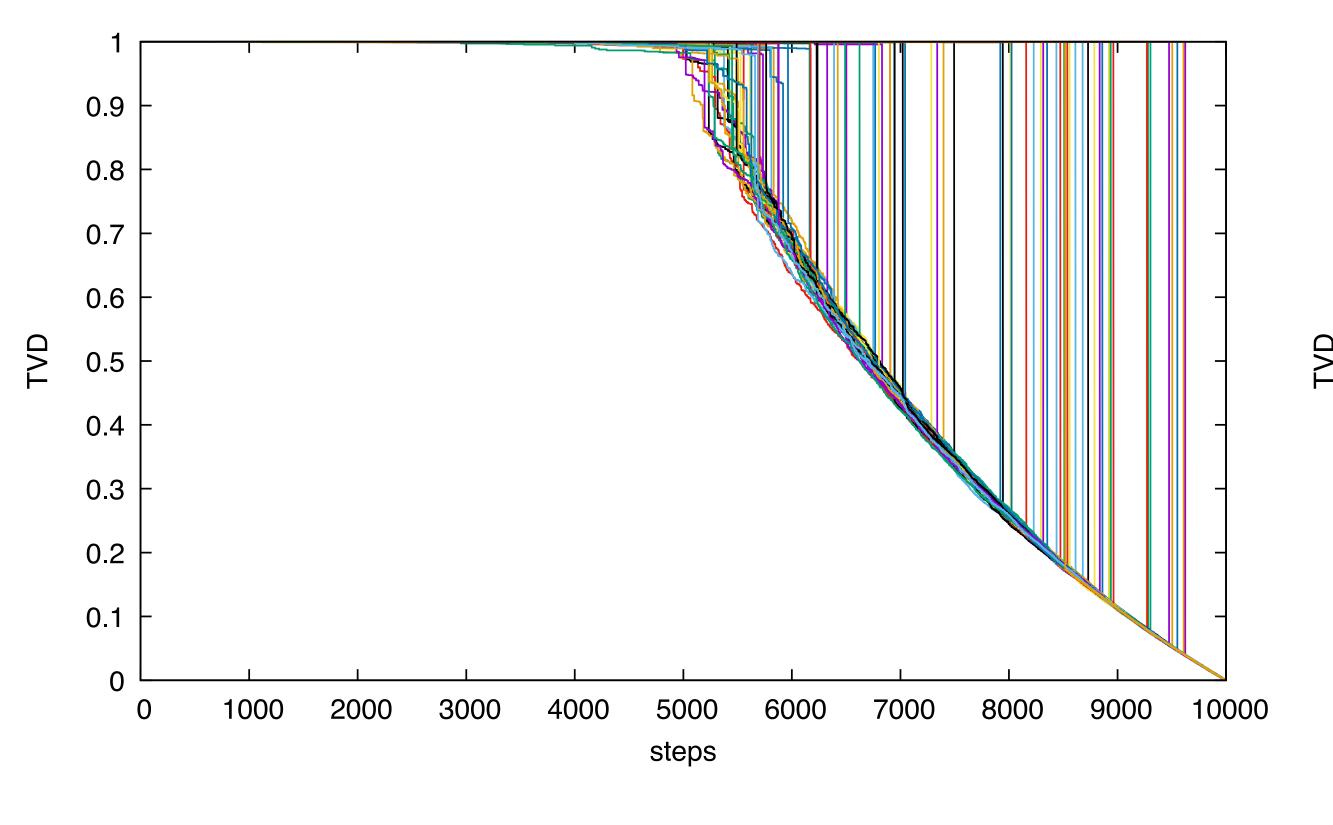
- 1. At time t=0, start with the empty graph on the vertex set $\mathcal{V}=[n]$.
- 2. At times $t \in \mathbb{N}$, add the edge $\{a, b\}$, where a, b are such that $\Pi_n(t) = \Pi_n(t-1) \circ (a, b)$.

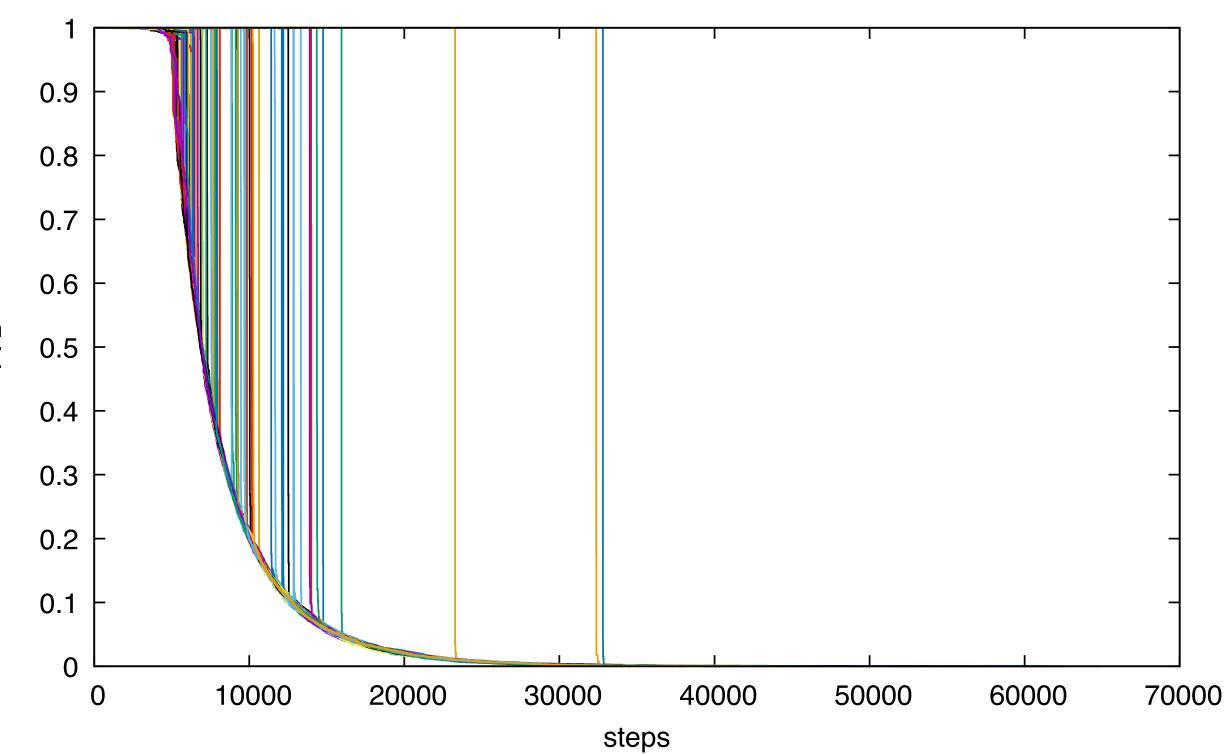
- Different distributions for different dynamics:
 - Coagulative: Erdős–Rényi with no cycles
 - Coagulative-fragmentative: Erdős-Rényi with no constraints

Associated graph process



Results Simulations



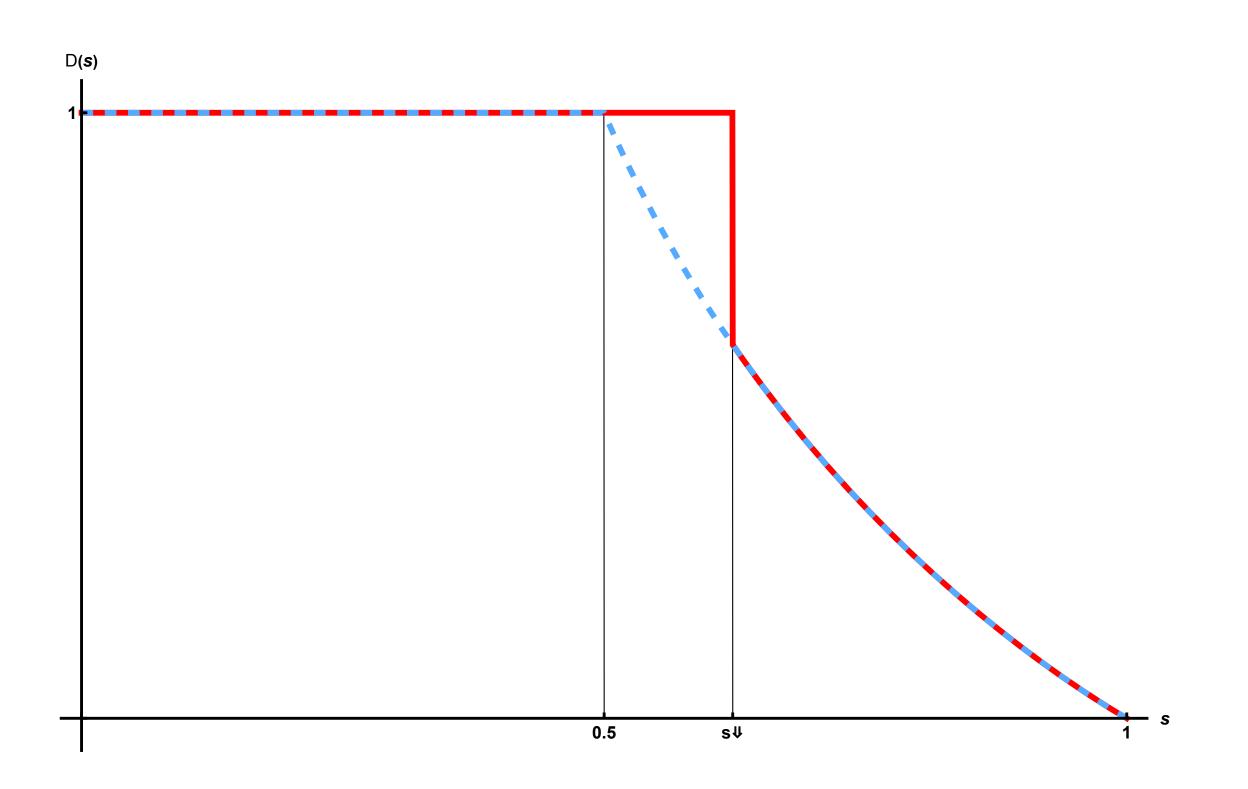


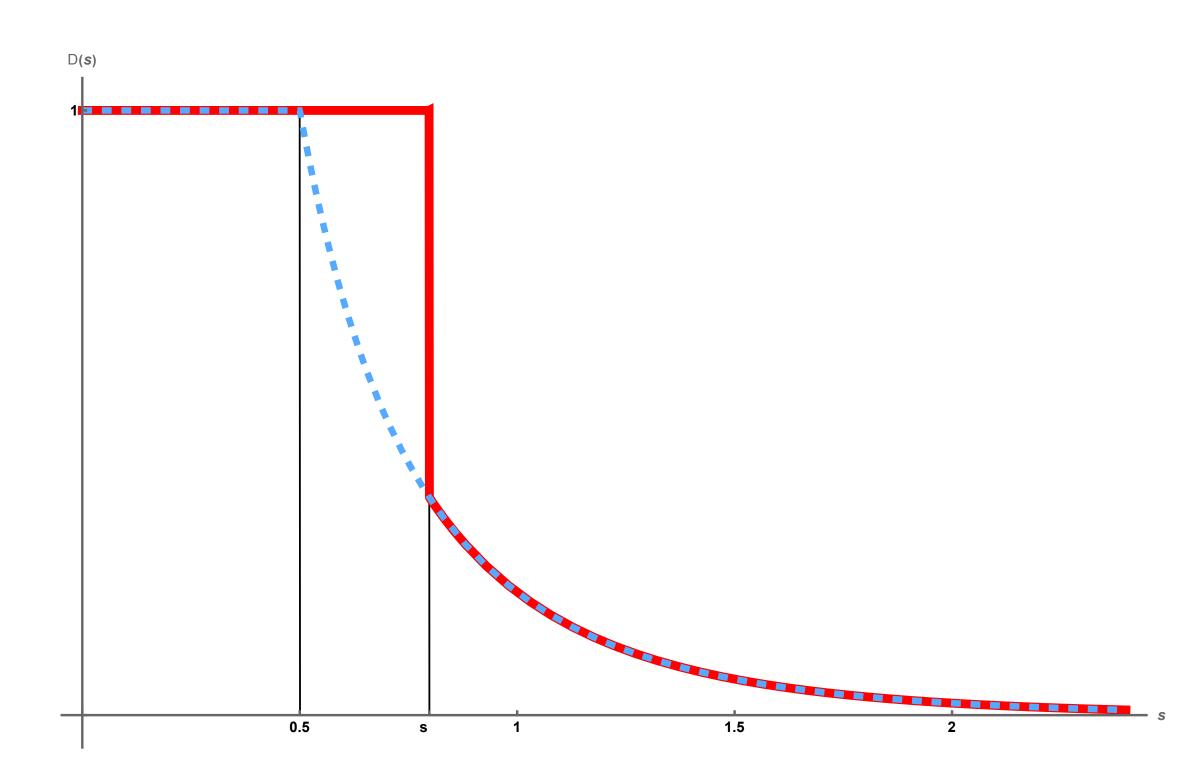
Coagulative dynamics

Coagulative-fragmentative dynamics

Results

Plot of a typical realisation





Coagulative dynamics

Coagulative-fragmentative dynamics

Results

Theorem 1.14 [Mixing profile for ISRW on CDP]

(1) Uniformly in $v \in [n]$,

$$\frac{T_{n,v}^{\Downarrow}}{n} \stackrel{d}{\to} s^{\Downarrow}, \tag{1.13}$$

where s^{\Downarrow} is the [0,1]-valued random variable with distribution $\mathbb{P}(s^{\Downarrow} \leq s) = \eta(s)$, $s \in [0,1]$.

(2) Uniformly in $v \in [n]$,

$$(\mathcal{D}_n^v(sn))_{s\in[0,1]} \stackrel{d}{\to} \left(1 - \eta(s)\mathbb{1}_{\{s>s^{\Downarrow}\}}\right)_{s\in[0,1]} \quad in \ the \ Skorokhod \ M_1\text{-topology}.$$
 (1.14)

Theorem 1.15 [Mixing profile for ISRW on CFDP]

(1) Uniformly in $v \in [n]$,

$$\frac{T_{n,v}^{\downarrow}}{n} \xrightarrow{d} s^{\downarrow}, \tag{1.15}$$

where s^{\Downarrow} is the non-negative random variable with distribution $\mathbb{P}(s^{\Downarrow} \leq s) = \zeta(s), s \in [0, \infty)$.

(2) Uniformly in $v \in [n]$,

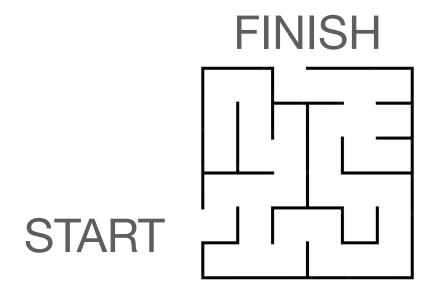
$$(\mathcal{D}_n^v(sn))_{s\in[0,\infty)} \stackrel{d}{\to} (1-\zeta(s)\mathbb{1}_{\{s>s^{\psi}\}})_{s\in[0,\infty)}$$
 in the Skorokhod M_1 -topology. (1.16)

Three-step road towards the proof

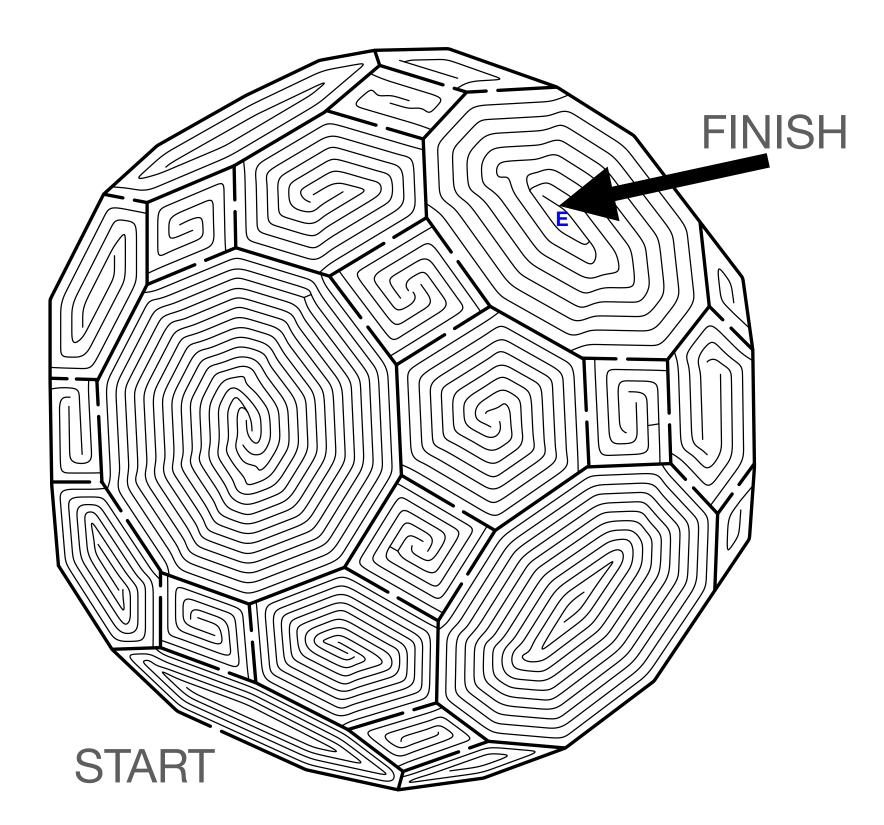
- 1. Understand the structure and evolution of permutation cycles
- 2. Identify the distribution of rescaled "drop-down time" $\frac{1}{n}$
- 3. Show "ISRW local mixing" upon drop-down in o(n) steps of the dynamics

Relative difficulty of proofs

Coagulative dynamics:



Coagulative-fragmentative dynamics:



Path towards the proofs

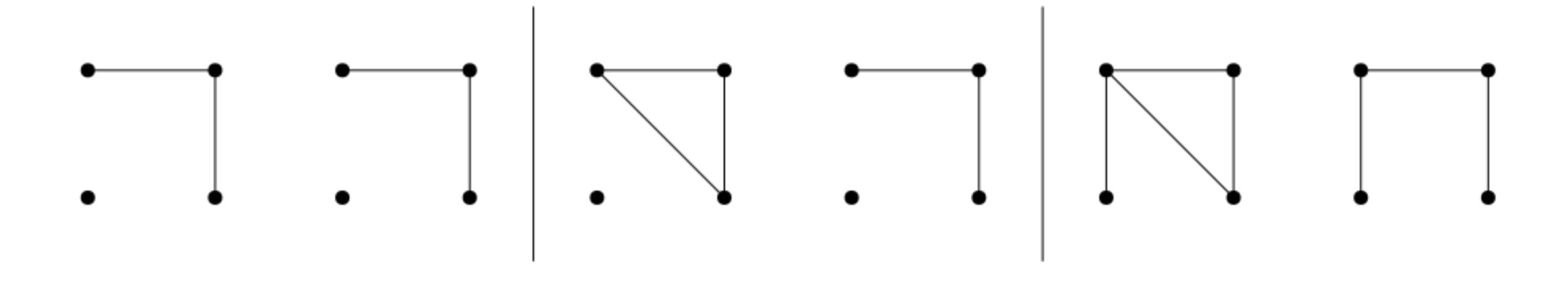
Coagulation-only dynamics

- 1. Understand the structure and evolution of permutation cycles
 - Described by sizes of connected components in the cycle-free Erdős-Rényi model.
- 2. Identify the distribution of rescaled "drop-down time" $\frac{T^{\Downarrow}}{n}$
 - . CDF of $\frac{T^{\Downarrow}}{n}$ is given by $\eta(c),\ c\in[0,1],$ related to the CF-ER giant component.
- 3. Show "ISRW local mixing" upon drop-down in o(n) steps of the dynamics
 - Follows from the definition of the infinite-speed random walk.

Technical problems

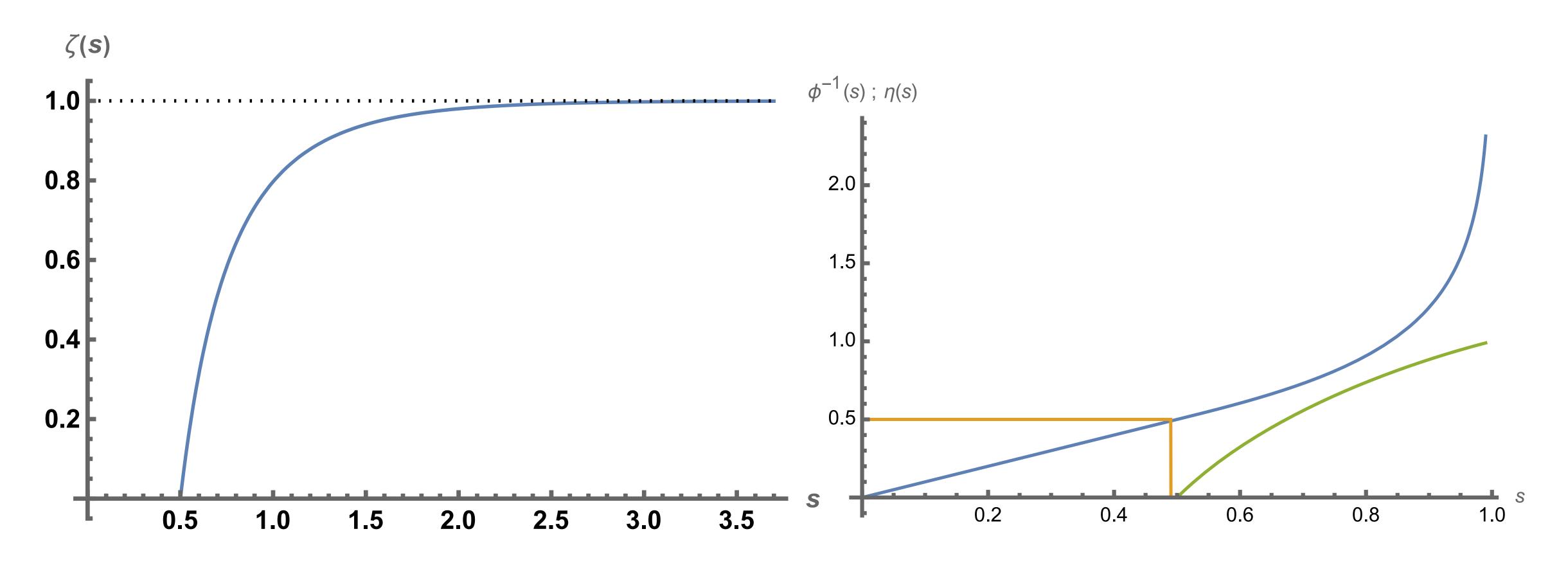
Size of the giant component in cycle-free Erdős-Rényi

- Coupling to the unconstrained Erdős–Rényi model $(G(n, M=t))_{t=0}^{\infty}$.
- Sizes of connected components of $F_n(t)$ correspond to the sizes of connected components of $G_n(\tau)$ with some different time $\tau(t)$.



Technical problems

Size of the giant component in cycle-free Erdős-Rényi



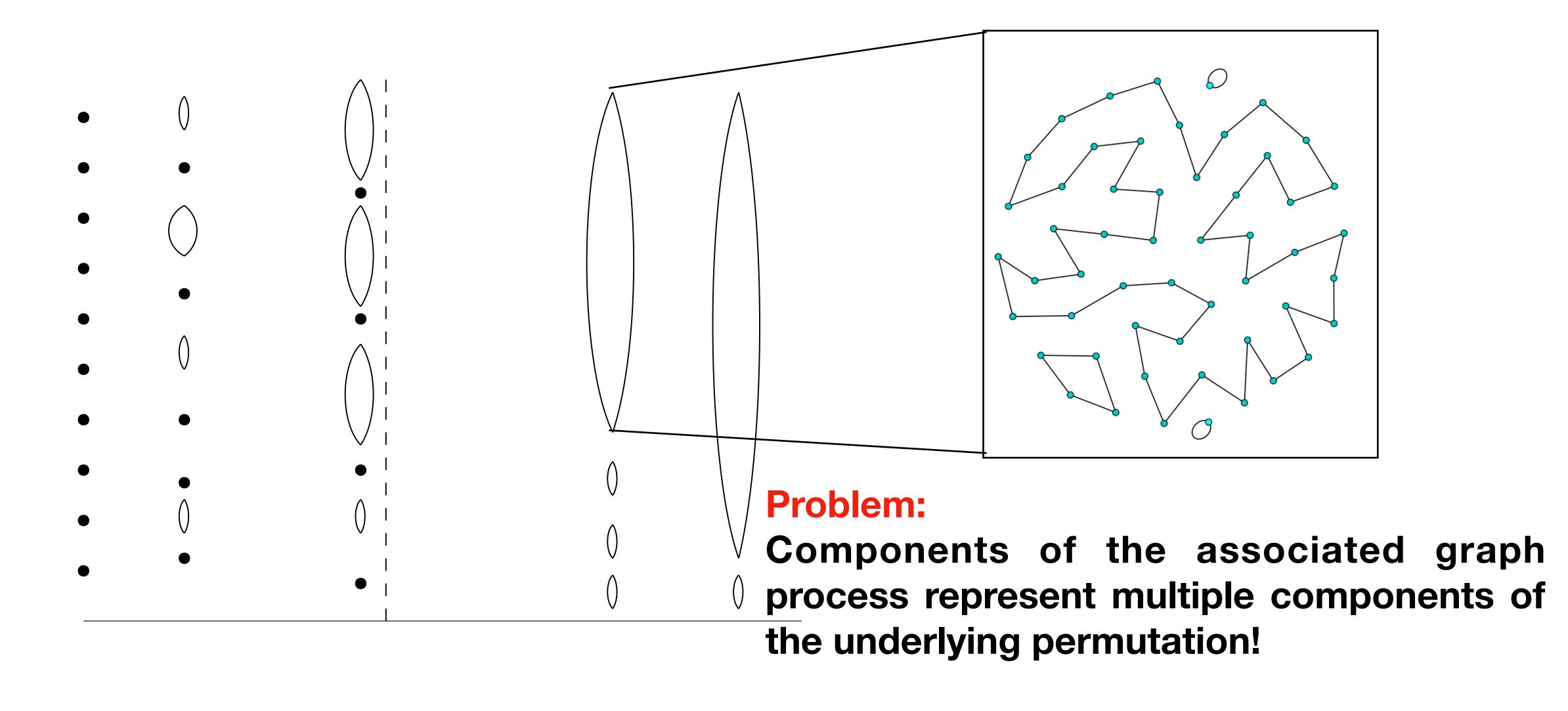
Path towards the proofs

Coagulative-fragmentative dynamics

- 1. Understand the structure and evolution of permutation cycles
 - COMPLICATED! Schramm (2005): PD(1) substructure on the giant.
- 2. Identify the distribution of rescaled "drop-down time" $\frac{T^{\Downarrow}}{n}$
 - CDF of T^{\Downarrow}/n is given by $\zeta(c),\ c\in(0,\infty)$ related to the Erdős–Rényi giant component.
 - Furthermore, whp the support of the ISRW does not experience fragmentation before T^{ψ} .
- 3. Show "ISRW local mixing" upon drop-down in o(n) steps of the dynamics
 - COMPLICATED! Mixing induced by large cycles.

Technical problems

Mixing in sublinear-time upon drop-down



Technical problems

Mixing in sublinear-time upon drop-down

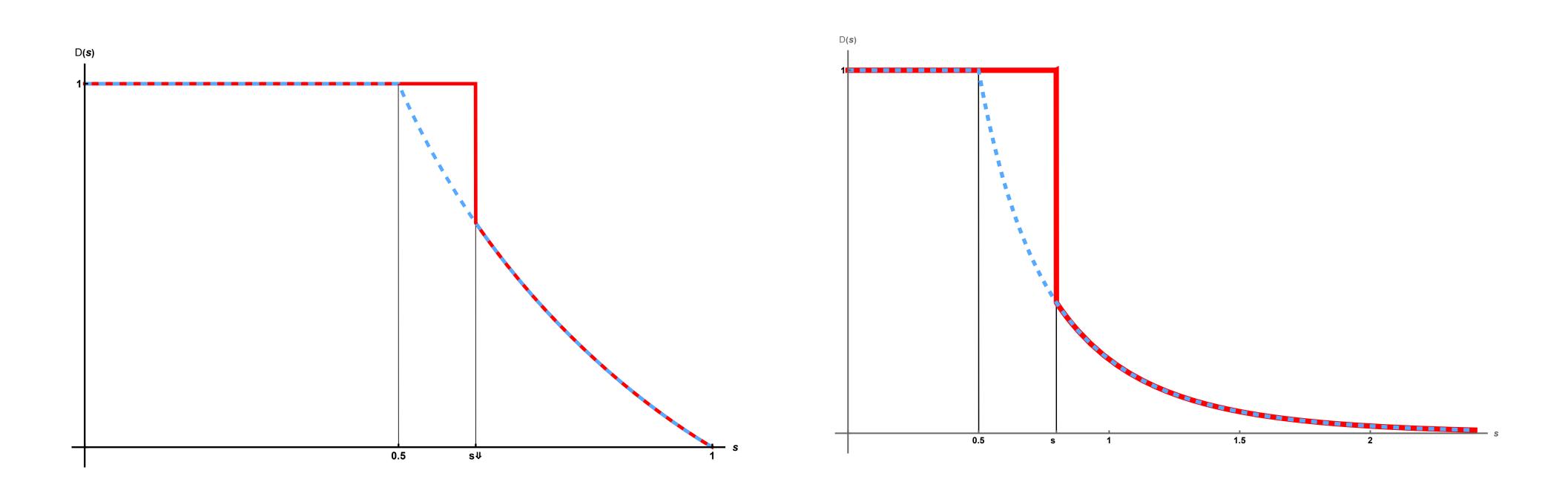
- Schramm's coupling main tool to study the structure of cycles
- Adaptation of Schramm's coupling to a dynamic setting.
- Approximate the real cycle structure by a PD(1) sample evolving by stationary dynamics.
- A subtle argument shows that within a o(n) timescale, a cycle that covers almost the entire "AGP-giant" appears whp.

What next?

- Random walk with a commensurate rate?
- More general dynamics?
- Voter model on a dynamic permutation?

Summary

The mixing profile of an ISRW on a dynamic random permutation has a cut-off-like discontinuity at a random time



Thank you for your attention.

References

Cycle structure of dynamic random permutations

- N. Berestycki and R. Durrett. A phase transition in the random transposition random walk.
 Probab. Theory Relat. fields, 136:203–233, 2006.
- O. Schramm. Compositions of random transpositions. Israel J. Math., 147:221–243, 2005.

Accesible explanation of Schramm's coupling

• J. E. Björnberg, M. Kotowski, B. Lees, and P. Miłoś. The interchange process with reversals on the complete graph. Electron. J. Prob., 24:1–43, 2019.