Mixing of fast random walks on dynamic random permutations

Oliver Nagy

Joint project with:
Luca Avena (Florence), Remco van der Hofstad (Eindhoven), Frank den Hollander (Leiden).

Model

Underlying geometry: Dynamic permutation

- Take $n \in \mathbb{N}$ and define the sequence $\left(\Pi_{n}(t)\right)_{t=0}^{\infty}$ such that:
- $\Pi_{n}(0)=\operatorname{Id} \in S_{n}$
- $\forall t \geq 1: \Pi_{n}(t)=\Pi_{n}(t-1) \circ(a, b)$, where (a, b) is transposition chosen according to a given rule
- Dynamic rules under consideration:
- Transpositions of elements on different cycles picked u.a.r. (coagulation-only)
- Transpositions chosen u.a.r. (coagulation-fragmentation)

Model

Stochastic process: Infinite-speed random walk (ISRW)

Definition 1.6 [Infinite-speed random walk on Π_{n}] Fix Π_{n} and an element $v_{0} \in[n]$. Recall that $\gamma_{v}\left(\Pi_{n}(t)\right)$ is the cycle of $\Pi_{n}(t)$ that contains v. The infinite-speed random walk (ISRW) starting from v_{0} is the random process $X_{n}^{v_{0}}=\left(X_{n}^{v_{0}}(t)\right)_{t \in \mathbb{N}_{0}}$ on [n] with initial distribution given by

$$
\begin{equation*}
\mu^{X_{n}^{v_{0}}}(0)=\left(\mu_{w}^{X_{n}^{v_{0}}}(0)\right)_{w \in[n]}, \tag{1.4}
\end{equation*}
$$

where

$$
\mu_{w}^{X_{n}^{v_{0}}}(0)= \begin{cases}\frac{1}{\left|\gamma_{w}\left(\Pi_{n}(0)\right)\right|}, & w \in \gamma_{v_{0}}\left(\Pi_{n}(0)\right), \tag{1.5}\\ 0, & w \notin \gamma_{v_{0}}\left(\Pi_{n}(0)\right),\end{cases}
$$

and with distribution at time $t \in \mathbb{N}$ given by

$$
\begin{equation*}
\mu^{X_{n}^{v_{0}}}(t)=\left(\mu_{w}^{X_{n}^{v_{0}}}(t)\right)_{w \in[n]}, \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{w}^{X_{n}^{v_{0}}}(t)=\frac{1}{\left|\gamma_{w}\left(\Pi_{n}(t)\right)\right|} \sum_{u \in \gamma_{w}\left(\Pi_{n}(t)\right)} \mu_{u}^{X_{n}^{v_{0}}}(t-1) . \tag{1.7}
\end{equation*}
$$

Model

Example: ISRW on a dynamic permutation

The main question

- Let v_{0} denote the starting vertex of the ISRW. How does the mixing profile

$$
\mathscr{D}_{n}^{v_{0}}(t)=\left\|\mu(t)-\mu^{\text {stat }}\right\|_{\mathrm{TV}} \in[0,1]
$$

evolve in time?

- $\|X-Y\|_{\mathrm{TV}}$ denotes the total variation distance between prob. measures X, Y;

$$
\|X-Y\|_{\mathrm{TV}}=\sup _{A \in \Omega}|X(A)-Y(A)| \stackrel{!}{=} \frac{1}{2}\|X-Y\|_{1} \text { (in countable prob. spaces) }
$$

- $\mu(t)$ is the ISRW distribution at time t
- $\mu^{\text {stat }}=\operatorname{Unif}(\{1, \ldots, \mathrm{n}\})$ is the stationary distribution of the ISRW;

Mixing profile zoo - typical exhibits

Crossover, but without a cut-off

Two-sided cut-off

Results

Simulations

Coagulative dynamics

Coagulative-fragmentative dynamics

Results

Plot of a typical realisation

Coagulative dynamics

Coagulative-fragmentative dynamics

Results

Theorem 1.14 [Mixing profile for ISRW on CDP]
(1) Uniformly in $v \in[n]$,

$$
\begin{equation*}
\frac{T_{n, v}^{\Downarrow}}{n} \xrightarrow{d} s^{\Downarrow} \tag{1.13}
\end{equation*}
$$

where s^{\Downarrow} is the $[0,1]$-valued random variable with distribution $\mathbb{P}\left(s^{\Downarrow} \leq s\right)=\eta(s), s \in[0,1]$.
(2) Uniformly in $v \in[n]$,

$$
\begin{equation*}
\left(\mathcal{D}_{n}^{v}(s n)\right)_{s \in[0,1]} \xrightarrow{d}\left(1-\eta(s) \mathbb{1}_{\left\{s>s^{\Downarrow}\right\}}\right)_{s \in[0,1]} \quad \text { in the Skorokhod } M_{1} \text {-topology. } \tag{1.14}
\end{equation*}
$$

Theorem 1.15 [Mixing profile for ISRW on CFDP]
(1) Uniformly in $v \in[n]$,

$$
\begin{equation*}
\frac{T_{n, v}^{\Downarrow}}{n} \xrightarrow{d} s^{\Downarrow} \tag{1.15}
\end{equation*}
$$

where s^{\Downarrow} is the non-negative random variable with distribution $\mathbb{P}\left(s^{\Downarrow} \leq s\right)=\zeta(s), s \in[0, \infty)$.
(2) Uniformly in $v \in[n]$,

$$
\begin{equation*}
\left(\mathcal{D}_{n}^{v}(s n)\right)_{s \in[0, \infty)} \xrightarrow{d}\left(1-\zeta(s) \mathbb{1}_{\left\{s>s^{\Downarrow}\right\}}\right)_{s \in[0, \infty)} \quad \text { in the Skorokhod } M_{1} \text {-topology. } \tag{1.16}
\end{equation*}
$$

3-step path towards the proof

1. Understand the structure and evolution of permutation cycles
2. Identify the distribution of rescaled "drop-down time" $\frac{T^{\Downarrow}}{n}$
3. Show "ISRW local mixing" upon drop-down in $o(n)$ steps of the dynamics

Associated graph process

Definition 2.1 [Graph process associated with Π_{n}] Let $\Pi_{n}=\left(\Pi_{n}(t)\right)_{t=0}^{t_{\max }}$ with $t_{\max } \in \mathbb{N} \cup\{\infty\}$ be a dynamic permutation starting for the identity permutation. Construct the associated graph process, denoted by $A_{\Pi_{n}}$, as follows:

1. At time $t=0$, start with the empty graph on the vertex set $\mathcal{V}=[n]$.
2. At times $t \in \mathbb{N}$, add the edge $\{a, b\}$, where a, b are such that $\Pi_{n}(t)=\Pi_{n}(t-1) \circ(a, b)$.

- Different distributions for different dynamics:
- Coagulative: Erdős-Rényi with no cycles
- Coagulative-fragmentative: Erdős-Rényi multigraph with no constraints

Associated graph process

Path towards the proofs

Coagulation-only dynamics

1. Understand the structure and evolution of permutation cycles

- Described by sizes of connected components in the cycle-free Erdős-Rényi model

2. Identify the distribution of rescaled "drop-down time" $\frac{T^{\Downarrow}}{n}$

- CDF of $\frac{T^{\Downarrow}}{n}$ is given by $\eta(c), c \in[0,1]$
- related to the cycle-free Erdős-Rényi giant component

3. Show "ISRW local mixing" upon drop-down in $o(n)$ steps of the dynamics

- Follows from the definition of the infinite-speed random walk.

Technical problems

Size of the giant component in cycle-free Erdős-Rényi

- Coupling to the unconstrained Erdős-Rényi model $(G(n, M=t))_{t=0}^{\infty}$
- Sizes of connected components of $F_{n}(t)$ correspond to the sizes of connected components of $G_{n}(\tau)$ with some different time $\tau(t)$.
$\zeta(s)$

Path towards the proofs

Coagulative-fragmentative dynamics

1. Understand the structure and evolution of permutation cycles

- Schramm (2005): PD(1) substructure on the giant

2. Identify the distribution of rescaled "drop-down time" $\frac{T^{\Downarrow}}{n}$

- CDF of T^{\Downarrow} / n is given by $\zeta(c), c \in(0, \infty)$ - related to the Erdős-Rényi giant component.
- Furthermore, whp the support of the ISRW does not experience fragmentation before T^{\Downarrow}

3. Show "ISRW local mixing" upon drop-down in $o(n)$ steps of the dynamics

- Recurrence of large-enough permutation cycles on the AGP-giant implies mixing

Technical problems

Mixing in sublinear-time upon drop-down for coag.-frag. dynamics

Problem:
Components of the associated graph
0 process represent multiple components of the underlying permutation!

Technical problems

Mixing in sublinear-time upon drop-down for coag.-frag. dynamics

- By definition of the infinite-speed random walk, all the mass on any permutation cycle gets spread out uniformly over that cycle.
- Therefore ε-mixing on the giant $\left(\equiv \| X(t)\right.$ - Uniform $\left.\left(\left[\left|\mathscr{C}_{\mathrm{AGP}}^{\max }(t)\right|\right]\right) \|_{\mathrm{TV}} \leq \varepsilon\right)$ can be achieved by spreading over cycle C s.t. $|C(t)|=(1-\varepsilon)\left|\mathscr{C}_{\mathrm{AGP}}^{\max }(t)\right|$
- How to show recurrence of these large cycles?
- Show that the evolution of the cycle structure can be well-approximated by a Markov chain with some "nice" properties.

Technical problems

Recurrence of large-enough cycles

- Schramm's coupling:
- Coupling between the cycle structure of $\Pi_{n}(t), t>c n, c>1 / 2$ and a sample from $\mathrm{PD}(1)$.
- Under this coupling the permutation cycle structure and a PD(1) sample get close in sup-norm. Under some fairly mild assumptions, for any $\varepsilon>0$ and $q \sim \operatorname{Uniform}\left(2 \mathbb{Z} \cap\left[0,\left\lfloor\varepsilon^{-1 / 2}\right\rfloor\right]\right)$, it holds that:

$$
\begin{equation*}
\mathbf{P}\left[\left\|Y^{q}-Z^{q}\right\|_{\infty}>\rho\right] \leq O(1) \rho^{-1}|\log \epsilon|^{-1} \tag{4.1}
\end{equation*}
$$

Summary

- ISRW on dynamic permutations has a TVD-mixing profile with a discontinuity at a random time.

- Possibly an interesting dynamic geometry for other stochastic models, such as the voter model.

References

- Cycle structure of dynamic random permutations
- N. Berestycki and R. Durrett. A phase transition in the random transposition random walk. Probab. Theory Relat. fields, 136:203-233, 2006.
- O. Schramm. Compositions of random transpositions. Israel J. Math., 147:221-243, 2005.
- Accesible explanation of Schramm's coupling
- J. E. Björnberg, M. Kotowski, B. Lees, and P. Miłoś. The interchange process with reversals on the complete graph. Electron. J. Prob., 24:1-43, 2019.

Thank you for your attention.

