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Model
Underlying geometry: Dynamic permutation

• Take  and define the sequence  such that:


• 


• ,  
	 	 where  is transposition chosen according to a given rule


• Dynamic rules under consideration:

• Transpositions of elements on different cycles picked u.a.r. (coagulation-only)

• Transpositions chosen u.a.r. (coagulation-fragmentation)

n ∈ ℕ (Πn(t))∞
t=0

Πn(0) = 𝖨𝖽 ∈ Sn

∀t ≥ 1 : Πn(t) = Πn(t − 1) ∘ (a, b)
(a, b)



Model
Stochastic process: Infinite-speed random walk (ISRW)



Model
Example: ISRW on a dynamic permutation
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The main question
• Let  denote the starting vertex of the ISRW. How does the mixing profile 

	 	  
evolve in time?


•  denotes the total variation distance between prob. measures X,Y; 
	  (in countable prob. spaces)


•  is the ISRW distribution at time 


•  is the stationary distribution of the ISRW;

v0

𝒟v0
n (t) = ∥μ(t) − μstat∥TV ∈ [0,1]

∥X − Y∥TV
∥X − Y∥TV = sup

A∈Ω
|X(A) − Y(A) | != 1

2 ∥X − Y∥1

μ(t) t

μstat = 𝖴𝗇𝗂𝖿({𝟣, . . . , 𝗇})



Mixing profile zoo - typical exhibits
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The link between the mixing times
On a dynamic graph with initial state ⇠, consider a non-backtracking random walk (NBRW) starting from the half-edge x.
Under mild regularity conditions, we show that with high probability in the initial con�guration (x, ⇠), as n ! 1,

Ddyn
x,⇠ (t) = P(⌧ > t)Dstat

x,⇠ (t) + oP(1),
where:
• ⌧ is the �rst time the random walk steps over an edge that has been a�ected by the graph dynamics.
•Ddyn

x,⇠ (t),Dstat
x,⇠ (t) are the total variation distances from the uniform distribution in the dynamic and static case, respectively.

Graphs and their dynamics
• Initial graph is sampled from the con�guration model.
•Kt-to-Lt rewiring dynamics:
– Sample edges fromKt and break them in � halves.
– Sample and break the same number of edges from Lt.
– Create edges (k, l) from half-edges k 2 Kt

l 2 Lt
chosen u.a.r.

• Sets of edges: local – under the walker, global – entire
graph, near(rn) – NBRW-distance from the walker< rn .

Red – near(�) ⌘ local,
near(�) [ Blue – near(�),
near(�) [ Orange – near(�),
near(�) [ Green – near(�),
near(�) [ Purple – near(�)⌘ global.

Regularity conditions & assumptions
•Graph regularity:
sparse, locally tree-like, vertex degrees at least 2.

•Regularity of dynamics:
dynamical self-avoidance, ⌧ almost independent of the
�ne details of the path, rewiring has no bias.

• Control over Dstat
x,⇠ (t): we use assumptions and results of

Ben-Hamou and Salez (DOI: ��.����/��-AOP����).

Mathematical ideas
• Proof of the linking theorem
A coupling between the static and the dynamic setting.

• Computation of P(⌧ > t)

– {local, global}-to-global: counting argument;
– near-to-global: counting argument and a bound on the
e�ect of shortcuts.

Trichotomies: {local, global}-to-global dynamics
• � parameter: ↵n – rewiring rate

t↵n

Ddyn(t)

No cut-o�

c⇤ t/ log n

Ddyn(t)

One-sided cut-o�

c⇤ t/ log n

Ddyn(t)

Two-sided cut-o�

Trichotomy ofDdyn
x,⇠ (t) for

local-to-global rewiring.

t
p

↵n

Ddyn(t)

No cut-o�

c⇤ t/ log n

Ddyn(t)

One-sided cut-o�

c⇤ t/ log n

Ddyn(t)

Two-sided cut-o�

Trichotomy ofDdyn
x,⇠ (t) for

global-to-global rewiring.

Hexachotomy: near(rn)-to-global dynamics
• � parameters: ↵n – rewiring rate, rn – rewiring range

t
p

↵n

Ddyn(t)

No cut-o�

c⇤ t/ log n�
�

Ddyn(t)

One-sided cut-o� with a crossover

1 t/rn

Ddyn(t)

Crossover, but without a cut-o�

c⇤ t/ log n

Ddyn(t)

One-sided cut-o�

t↵nrn

Ddyn(t)

No cut-o�

c⇤ t/ log n

Ddyn(t)

Two-sided cut-o�

Hexachotomy ofDdyn
x,⇠ (t) for near-to-global rewiring.

The red line marks a change in the shape of the curve.

Shortcut

NBRW path

Example of a shortcut



Results
Simulations
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Results
Plot of a typical realisation
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3-step path towards the proof

1. Understand the structure and evolution of permutation cycles 

2. Identify the distribution of rescaled “drop-down time”  

3. Show “ISRW local mixing” upon drop-down in  steps of the dynamics

T⇓

n
o(n)



Associated graph process

• Different distributions for different dynamics:


• Coagulative: Erdős–Rényi with no cycles


• Coagulative-fragmentative: Erdős–Rényi multigraph with no constraints



Associated graph process
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Path towards the proofs
Coagulation-only dynamics

1. Understand the structure and evolution of permutation cycles 

• Described by sizes of connected components in the cycle-free Erdős–Rényi model


2. Identify the distribution of rescaled “drop-down time”  

• CDF of  is given by   
	 	 	 – related to the cycle-free Erdős–Rényi giant component


3. Show “ISRW local mixing” upon drop-down in  steps of the dynamics 

• Follows from the definition of the infinite-speed random walk.

T⇓

n
T⇓

n
η(c), c ∈ [0,1]

o(n)



Technical problems
Size of the giant component in cycle-free Erdős–Rényi

• Coupling to the unconstrained Erdős–Rényi model 


• Sizes of connected components of  correspond to the sizes of 
connected components of  with some different time .

(G(n, M = t))∞
t=0
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Path towards the proofs
Coagulative-fragmentative dynamics

1. Understand the structure and evolution of permutation cycles 

• Schramm (2005):  substructure on the giant


2. Identify the distribution of rescaled “drop-down time”  

• CDF of  is given by  – related to the Erdős–Rényi giant component.


• Furthermore, whp the support of the ISRW does not experience fragmentation before 


3. Show “ISRW local mixing” upon drop-down in  steps of the dynamics 

• Recurrence of large-enough permutation cycles on the AGP-giant implies mixing

𝖯𝖣(1)

T⇓

n
T⇓/n ζ(c), c ∈ (0,∞)

T⇓

o(n)



Technical problems
Mixing in sublinear-time upon drop-down for coag.-frag. dynamics

Problem:  
Components of the associated graph 
process represent multiple components of 
the underlying permutation!



Technical problems
Mixing in sublinear-time upon drop-down for coag.-frag. dynamics

• By definition of the infinite-speed random walk, all the mass on any 
permutation cycle gets spread out uniformly over that cycle.


• Therefore -mixing on the giant (  ) 
can be achieved by spreading over cycle  s. t. 


• How to show recurrence of these large cycles? 

• Show that the evolution of the cycle structure can be well-approximated by 
a Markov chain with some “nice” properties. 

ε ≡ ∥X(t) − 𝖴𝗇𝗂𝖿𝗈𝗋𝗆([ |𝒞max
AGP(t) | ])∥TV ≤ ε

C |C(t) | = (1 − ε) |𝒞max
AGP(t) |



Technical problems
Recurrence of large-enough cycles

• Schramm’s coupling:


• Coupling between the cycle structure of  and a 
sample from .


• Under this coupling the permutation cycle structure and a  sample 
get close in sup-norm. Under some fairly mild assumptions, for any  
and , it holds that:

Πn(t), t > cn, c > 1/2
𝖯𝖣(1)

𝖯𝖣(1)
ε > 0

q ∼ 𝖴𝗇𝗂𝖿𝗈𝗋𝗆(2ℤ ∩ [0,⌊ε−1/2⌋])



Summary
• ISRW on dynamic permutations has a TVD-mixing profile with a discontinuity 

at a random time.


• Possibly an interesting dynamic geometry for other stochastic models, such 
as the voter model.
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