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Model
Dynamic permutation

• Take  and define the sequence  such that:


• 


• ,  
	 	 where  is transposition chosen according to a given rule


• Dynamic rules under consideration:

• Transpositions of elements on different cycles picked u.a.r. (coagulation-only)

• Transpositions chosen u.a.r. (coagulation-fragmentation)

n ∈ ℕ (Πn(t))∞
t=0

Πn(0) = 𝖨𝖽 ∈ Sn

∀t ≥ 1 : Πn(t) = Πn(t − 1) ∘ (a, b)
(a, b)



Model
Infinite-speed random walk



Model
Infinite-speed random walk on a dynamic permutation
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Results
Simulations
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Results
Plot of a typical realisation
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Results



Associated graph process

• Different distributions for different dynamics:


• For coagulative-only: Erdős–Rényi with no cycles


• For coagulative-fragmentative: Erdős–Rényi multigraph with no constraints



Path towards the proofs
Coagulation-only dynamics

• Understand evolution of permutation cycles 

• Described by sizes of connected components in the cycle-free Erdős–Rényi model


• Identify the distribution of rescaled “drop-down time”  

• CDF of  is given by   
	 	 	 – related to the cycle-free Erdős–Rényi giant component


• Show mixing properties 

• Follows from the definition of the infinite-speed random walk

T⇓/n

T⇓

n
η(c), c ∈ [0,1]



Path towards the proofs
Coagulative-fragmentative dynamics

• Understand evolution of permutation cycles 

• Schramm (2005): 
 coupling to Erdős–Rényi multigraph,  substructure on the giant


• Identify the distribution of rescaled “drop-down time”  

• CDF of  is given by  – related to the Erdős–Rényi giant component.


• Furthermore, whp the support of the ISRW does not experience fragmentation before 


• Show mixing properties 

• Recurrence of large-enough permutation cycles on the AGP-giant imply mixing

𝖯𝖣(1)

T⇓/n

T⇓/n ζ(c), c ∈ (0,∞)

T⇓



Technical problems
Size of the giant component in cycle-free Erdős–Rényi
• Coupling to the unconstrained Erdős–Rényi model:


• Sizes of connected components of  correspond to the sizes of 
connected components of  with some different time .

Fn(t)
Gn(τ) τ(t)



Technical problems
Size of the giant component in cycle-free Erdős–Rényi
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Technical problems
Mixing in sublinear-time upon drop-down for coag.-frag. dynamics

Problem:  
Components of the associated graph 
process represent multiple components of 
the underlying permutation!



Technical problems
Mixing in sublinear-time upon drop-down for coag.-frag. dynamics

• By definition of the infinite-speed random walk, all the mass on any 
permutation cycle gets spread out uniformly over that cycle.


• Therefore -mixing on the giant (  ) 
can be achieved by spreading over cycle  s. t. 


• How to show recurrence of these large cycles?

ε ≡ ∥X(t) − 𝖴𝗇𝗂𝖿𝗈𝗋𝗆([ |𝒞max
AGP(t) | ])∥TV ≤ ε

C |C(t) | = (1 − ε) |𝒞max
AGP(t) |



Technical problems
Recurrence of large-enough cycles

• Schramm’s coupling:


• Coupling between the cycle structure of  and a 
sample from .


• Under this coupling the permutation cycle structure and a  sample 
get close in sup-norm. Under some fairly mild assumptions,   and 

. Then:

Πn(t), t > cn, c > 1/2
𝖯𝖣(1)

𝖯𝖣(1)
ε > 0

q ∼ 𝖴𝗇𝗂𝖿𝗈𝗋𝗆(2ℤ ∩ [0,⌊ε−1/2⌋])



Technical problems
Trials using Schramm’s coupling

• In one trial:


1. Sample an independent  


2. Use Schramm’s coupling to couple it to the underlying dynamic permutation


3. Wait for the possible large component to break down


4. Repeat


• It can be shown that there is a strictly positive probability that a large-enough 
appeared during the trial and subsequently broke down.

Zi(t) ∼ 𝖯𝖣(1)

1

(1− ε)

cn

X1(t)

cn+ βn cn+ 2βn cn+ 3βn cn+ 4βn

q1
q2 q3 q4

cn+ 5βn cn+ 6βn cn+ 7βn cn+ 8βn

first trial second trial third trial fourth trial (. . .)



Summary
• ISRW on dynamic permutations has a TVD-mixing profile with a discontinuity 

at a random time.


• Possibly an interesting dynamic geometry for other stochastic models, such 
as the voter model.
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Thank you for your attention.


