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Model

Dynamic permutation

. Take n € N and define the sequence (Hn(t)) such that:

. I (0)=1Id €S,

Ve 1:1L(#)=1L(t—1)°(a,b),
where (a, b) is transposition chosen according to a given rule

0
[=

 Dynamic rules under consideration:
e Transpositions of elements on different cycles picked u.a.r. (coagulation-only)
* Transpositions chosen u.a.r. (coagulation-fragmentation)



Model

Infinite-speed random walk

Definition 1.6 [Infinite-speed random walk on II,,| Fix II,, and an element vg € [n|. Recall that
Y. (I1,, (%)) is the cycle of IL,,(¢) that contains v. The infinite-speed random walk (ISRW) starting from

vo is the random process X° = (X°(t))ten, on [n] with initial distribution given by

B0 0) = (137 0) (1.4)
weE |[n]
where
1
Mgzo (O) _ |’Yw(nn(0))|7 w 6 ’Y’UO (Hn(o))a (1.5)
0, w & Yu, (11,(0)),
and with distribution at time ¢t € N given by
(1) = (b3 (1) (1.6)
weE |[n]
where .
X0 X0
o™ (8) = py " (8 —1) (1.7)
7w (I ()| 2




Model

Infinite-speed random walk on a dynamic permutation
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Results

Simulations
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Results

Plot of a typical realisation
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Coagulative-fragmentative dynamics



Results

Theorem 1.14 [Mixing profile for ISRW on CDP]

(1) Uniformly in v € [n],

TV
nu 4 b (1.13)

n

where sV is the [0, 1]-valued random variable with distribution P(s¥ < s) = n(s), s € [0,1].

(2) Uniformly in v € [n],

(D (sn))se[o,1] 4 (1- n(s)]l{s>su})s€[0 L the Skorokhod M -topology. (1.14)
Theorem 1.15 [Mixing profile for ISRW on CFDP]
(1) Uniformly in v € [n],

TV
ny 4 b (1.15)

n
where sV is the non-negative random variable with distribution P(s¥ < s) = ((s), s € [0,00).

(2) Uniformly in v € [n],

(Dr(81))se0,00) 4 (1- C(S)H{S>S“})se[o,oo) in the Skorokhod M -topology. (1.16)



Associated graph process

Definition 2.1 [Graph process associated with II,,] Let II,, = (IL,(t));™% with ¢,,., € NU{oo} be
a dynamic permutation starting for the identity permutation. Construct the associated graph process,
denoted by Ay , as follows:

1. At time t = 0, start with the empty graph on the vertex set V = [n].
2. At times t € N, add the edge {a, b}, where a, b are such that II,(t) = II,,(t — 1) o (a, b).

» Different distributions for different dynamics:
e For coagulative-only: Erd6s—Rényi with no cycles

* For coagulative-fragmentative: Erd6s—Reényi multigraph with no constraints



Path towards the proofs

Coagulation-only dynamics

 Understand evolution of permutation cycles

e Described by sizes of connected components in the cycle-free Erdds—Rényi model

* |dentify the distribution of rescaled “drop-down time” TV/n

TV
. CDF of —is given by n(c), ¢ € [0,1]

— related to the cycle-free Erdos—Renyi giant component

 Show mixing properties

* Follows from the definition of the infinite-speed random walk



Path towards the proofs

Coagulative-fragmentative dynamics

 Understand evolution of permutation cycles

 Schramm (2005):
coupling to Erdés—Rényi multigraph, PD(1) substructure on the giant

 ldentify the distribution of rescaled “drop-down time” TV/n
. CDF of TV/n is given by £(¢), ¢ € (0,00) - related to the Erdés—Rényi giant component.

 Furthermore, whp the support of the ISRW does not experience fragmentation before TV

 Show mixing properties

* Recurrence of large-enough permutation cycles on the AGP-giant imply mixing



Technical problems

Size of the giant component in cycle-free Erdos-Renyi

e Coupling to the unconstrained Erd6s—Rényi model:

Definition 2.3 [Coupling between cycle-free and standard Erd6s-Rényi graph process| Let
Gn = (Gn(t))ten, be the Erdés-Rényi graph process on [n]| defined in Definition 1.9, and denote the
edge set of Gy (t) by &g, (1) Based on Gy, construct a graph-valued process F,, = (Fy,(t))ien, as
follows:

1. F,,(0) is the empty graph with vertex set [n].
2. At times t € N, define e°(t) = €, 1) \ €g,.(t—1), Which is the edge added at time ¢ to G, (?).

(a) Construct the candidate graph at time ¢, defined as F5(t) = (V,&F, t—1) U{e(?)}).
(b) If F°(t) is a forest, then set F,,(t) = F<(t).
(c) Otherwise, set F,(t) = F,,(t — 1).

Define the effective time 7, (t) of the coupled process (F,(t)):en, by setting 7,,(0) = 0 and, recursively
for t € N,

Tn(t—1) + 1, if F,,(t) # F,,(t — 1), i.e., the proposed edge has been accepted,

(1) = 2.1
Tn(1) {Tn(t — 1), if F,,(t) = F,(t — 1), i.e., the proposed edge has been rejected. (2:1)

» Sizes of connected components of F, (7) correspond to the sizes of
connected components of G, (7) with some different time z(¢).



Technical problems

Size of the giant component in cycle-free Erdos-Renyi
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Technical problems

Mixing in sublinear-time upon drop-down for coag.-frag. dynamics
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Problem:

Components of the associated graph
| process represent multiple components of

the underlying permutation!
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Technical problems

Mixing in sublinear-time upon drop-down for coag.-frag. dynamics

* By definition of the infinite-speed random walk, all the mass on any
permutation cycle gets spread out uniformly over that cycle.

« Therefore e-mixing on the giant ( = || X(?) — Uniform([ | €"ycp(D) | DllTy < €)

max

can be achieved by spreading over cycle Cs.t. [C(1)| = (1 — &) | € y5p(D) |

« How to show recurrence of these large cycles?



Technical problems

Recurrence of large-enough cycles

 Schramm'’s coupling:

» Coupling between the cycle structure of I1 (7), t > ¢n, ¢ > 1/2 and a
sample from PD(1).

 Under this coupling the permutation cycle structure and a PD(1) sample
get close in sup-norm. Under some fairly mild assumptions, € > 0 and

g ~ Uniform(2Z n [0,|e~"#]]). Then:

(4.1) PV - 2%l > p] < O(1)p™"|log ¢| ™.



Technical problems

Trials using Schramm’s coupling

e |n one trial:

1. Sample an independent Zi(t) ~ PD(1) ~ i 5 —— @ — 5 Tt
2. Use Schramm’s coupling to couple it to the underlying dynamic permutation

3. Wait for the possible large component to break down

4. Repeat

* |t can be shown that there Is a strictly positive probabillity that a large-enough
appeared during the trial and subsequently broke down.



Summary

* |ISRW on dynamic permutations has a TVD-mixing profile with a discontinuity
at a random time.
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* Possibly an interesting dynamic geometry for other stochastic models, such
as the voter model.
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Thank you for your attention.




