Mixing of fast random walks on dynamic random permutations

Oliver Nagy

Joint project with: Luca Avena (Leiden/Florence), Remco van der Hofstad (Eindhoven), Frank den Hollander (Leiden).

Universiteit Leiden

Mathematical Institute

NETWORKS is a project of University of Amsterdam Eindhoven University of Technology Leiden University Center for Mathematics and Computer Science (CWI)

Stochastic Processes and their Applications, July 27, 2023; Lisbon

Model **Dynamic permutation**

• Take $n \in \mathbb{N}$ and define the sequence

•
$$\Pi_n(0) = \mathrm{Id} \in S_n$$

•
$$\forall t \ge 1 : \Pi_n(t) = \Pi_n(t-1) \circ (a$$

where (a, b) is trans

- Dynamic rules under consideration:

 - Transpositions chosen u.a.r. (coagulation-fragmentation)

ce
$$\left(\Pi_n(t)\right)_{t=0}^{\infty}$$
 such that:

(a, b),

sposition chosen according to a given rule

• Transpositions of elements on different cycles picked u.a.r. (coagulation-only)

Model Infinite-speed random walk

Definition 1.6 [Infinite-speed random walk on Π_n] Fix Π_n and an element $v_0 \in [n]$. Recall that $\gamma_v(\Pi_n(t))$ is the cycle of $\Pi_n(t)$ that contains v. The infinite-speed random walk (ISRW) starting from v_0 is the random process $X_n^{v_0} = (X_n^{v_0}(t))_{t \in \mathbb{N}_0}$ on [n] with initial distribution given by

$$\mu^{X_n^{v_0}}(0) = \left(\mu_w^{X_n^{v_0}}(0)\right)_{w \in [n]},\tag{1.4}$$

where

$$\mu_{w}^{X_{n}^{v_{0}}}(0) = \begin{cases} \frac{1}{|\gamma_{w}(\Pi_{n}(0))|}, & w \in \gamma_{v_{0}}(\Pi_{n}(0)), \\ 0, & w \notin \gamma_{v_{0}}(\Pi_{n}(0)), \end{cases}$$
(1.5)

and with distribution at time $t \in \mathbb{N}$ given by

 $\mu^{X_n^{v_0}}(t) =$

where

$$\mu_w^{X_n^{v_0}}(t) = \frac{1}{|\gamma_w(\Pi_n(t))|} \sum_{u \in \gamma_w(\Pi_n(t))} \mu_u^{X_n^{v_0}}(t-1).$$
(1.7)

$$\left(\mu_w^{X_n^{v_0}}(t)\right)_{w\in[n]},\tag{1.6}$$

Model Infinite-speed random walk on a dynamic permutation

Results Simulations

Coagulative dynamics

Coagulative-fragmentative dynamics

Results Plot of a typical realisation

Coagulative dynamics

Coagulative-fragmentative dynamics

Results

Theorem 1.14 [Mixing profile for ISRW on CDP]

(1) Uniformly in $v \in [n]$,

where s^{\Downarrow} is the [0,1]-valued random variable with distribution $\mathbb{P}(s^{\Downarrow} \leq s) = \eta(s), s \in [0,1]$. (2) Uniformly in $v \in [n]$,

 $(\mathcal{D}_n^v(sn))_{s\in[0,1]} \xrightarrow{d} (1-\eta(s)\mathbb{1}_{\{s>s\}})$

Theorem 1.15 [Mixing profile for ISRW o (1) Uniformly in $v \in [n]$,

where s^{\Downarrow} is the non-negative random variable with distribution $\mathbb{P}(s^{\Downarrow} \leq s) = \zeta(s), s \in [0, \infty)$. (2) Uniformly in $v \in [n]$,

 $(\mathcal{D}_n^v(sn))_{s\in[0,\infty)} \xrightarrow{d} \left(1-\zeta(s)\mathbb{1}_{\{s>s^{\downarrow\}}}\right)_{s\in[0,\infty)}$

$$\frac{T_{n,v}^{\Downarrow}}{n} \xrightarrow{d} s^{\Downarrow}, \qquad (1.13)$$

$$_{\psi})_{s\in[0,1]}$$
 in the Skorokhod M_1 -topology. (1.14)
on **CFDP**]

$$\frac{T_{n,v}^{\Downarrow}}{n} \stackrel{d}{\to} s^{\Downarrow},\tag{1.15}$$

in the Skorokhod M_1 -topology. (1.16)

Associated graph process

denoted by A_{Π_n} , as follows:

- 1. At time t = 0, start with the empty graph on the vertex set $\mathcal{V} = [n]$.
- 2. At times $t \in \mathbb{N}$, add the edge $\{a, b\}$, where a, b are such that $\Pi_n(t) = \Pi_n(t-1) \circ (a, b)$.
- Different distributions for different dynamics:
 - For coagulative-only: Erdős–Rényi with no cycles
 - For coagulative-fragmentative: Erdős–Rényi multigraph with no constraints

Definition 2.1 [Graph process associated with Π_n] Let $\Pi_n = (\Pi_n(t))_{t=0}^{t_{\max}}$ with $t_{\max} \in \mathbb{N} \cup \{\infty\}$ be a dynamic permutation starting for the identity permutation. Construct the associated graph process,

Path towards the proofs **Coagulation-only dynamics**

- Understand evolution of permutation cycles
- Identify the distribution of rescaled "drop-down time" T^{\Downarrow}/n

• CDF of
$$\frac{T^{\Downarrow}}{n}$$
 is given by $\eta(c), c \in [0]$ - related to

- Show mixing properties
 - Follows from the definition of the infinite-speed random walk

Described by sizes of connected components in the cycle-free Erdős–Rényi model

),1]

the cycle-free Erdős–Rényi giant component

Path towards the proofs Coagulative-fragmentative dynamics

- Understand evolution of permutation cycles
 - Schramm (2005): coupling to Erdős–Rényi multigraph, PD(1) substructure on the giant
- Identify the distribution of rescaled "drop-down time" T^{\Downarrow}/n
 - CDF of T^{\Downarrow}/n is given by $\zeta(c), c \in (0,\infty)$ related to the Erdős–Rényi giant component.
 - Furthermore, whp the support of the ISRW does not experience fragmentation before T^{\Downarrow}
- Show mixing properties
 - Recurrence of large-enough permutation cycles on the AGP-giant imply mixing

Technical problems Size of the giant component in cycle-free Erdős–Rényi

Coupling to the unconstrained Erdős–Rényi model:

Definition 2.3 [Coupling between cycle-free and standard Erdős-Rényi graph process] Let $G_n = (G_n(t))_{t \in \mathbb{N}_0}$ be the Erdős-Rényi graph process on [n] defined in Definition 1.9, and denote the edge set of $G_n(t)$ by $\mathcal{E}_{G_n(t)}$. Based on G_n , construct a graph-valued process $F_n = (F_n(t))_{t \in \mathbb{N}_0}$ as follows:

- 1. $F_n(0)$ is the empty graph with vertex set [n].
- - (b) If $F_n^c(t)$ is a forest, then set $F_n(t) = F_n^c(t)$.
 - (c) Otherwise, set $F_n(t) = F_n(t-1)$.

Define the effective time $\tau_n(t)$ of the coupled process $(F_n(t))_{t\in\mathbb{N}_0}$ by setting $\tau_n(0) = 0$ and, recursively for $t \in \mathbb{N}$,

$$\tau_n(t) = \begin{cases} \tau_n(t-1) + 1, & \text{if } F_n(t) \neq F_n(t) \\ \tau_n(t-1), & \text{if } F_n(t) = F_n(t) \end{cases}$$

Sizes of connected components of $F_n(t)$ correspond to the sizes of connected components of $G_n(\tau)$ with some different time $\tau(t)$.

2. At times $t \in \mathbb{N}$, define $e^{c}(t) = \mathcal{E}_{G_{n}(t)} \setminus \mathcal{E}_{G_{n}(t-1)}$, which is the edge added at time t to $G_{n}(t)$.

(a) Construct the candidate graph at time t, defined as $F_n^c(t) = (\mathcal{V}, \mathcal{E}_{F_n(t-1)} \cup \{e^c(t)\}).$

(t-1), i.e., the proposed edge has been accepted, (2.1)(t-1), i.e., the proposed edge has been rejected.

Technical problems Size of the giant component in cycle-free Erdős–Rényi

Technical problems Mixing in sublinear-time upon drop-down for coag.-frag. dynamics

the underlying permutation!

Technical problems Mixing in sublinear-time upon drop-down for coag.-frag. dynamics

- By definition of the infinite-speed random walk, all the mass on any permutation cycle gets spread out uniformly over that cycle.
- How to show recurrence of these large cycles?

• Therefore ε -mixing on the giant ($\equiv ||X(t) - Uniform([|\mathscr{C}_{AGP}^{max}(t)|])||_{TV} \leq \varepsilon$) can be achieved by spreading over cycle C s. t. $|C(t)| = (1 - \varepsilon) |\mathscr{C}_{AGP}^{max}(t)|$

Technical problems Recurrence of large-enough cycles

- Schramm's coupling:
 - Coupling between the cycle structure of $\prod_n(t)$, t > cn, c > 1/2 and a sample from PD(1).
 - Under this coupling the permutation cycle structure and a PD(1) sample get close in sup-norm. Under some fairly mild assumptions, $\varepsilon > 0$ and $q \sim \text{Uniform}(2\mathbb{Z} \cap [0, \lfloor \varepsilon^{-1/2} \rfloor])$. Then:

(4.1)
$$\mathbf{P}[\|Y^q - Z^q\|_{\infty} > \rho] \le O(1)\rho^{-1}|\log \epsilon|^{-1}.$$

Technical problems Trials using Schramm's coupling

- In one trial:
 - 1. Sample an independent $Z_i(t) \sim PD(1)$
 - Wait for the possible large component to break down
 - 2. Use Schramm's coupling to couple it to the underlying dynamic permutation 3.
 - Repeat 4.
- It can be shown that there is a strictly positive probability that a large-enough appeared during the trial and subsequently broke down.

Summary

at a random time.

as the voter model.

ISRW on dynamic permutations has a TVD-mixing profile with a discontinuity

Possibly an interesting dynamic geometry for other stochastic models, such

References

Cycle structure of dynamic random permutations

- N. Berestycki and R. Durrett. A phase transition in the random transposition random walk. Probab. Theory Relat. fields, 136:203–233, 2006.
- O. Schramm. Compositions of random transpositions. Israel J. Math., 147:221–243, 2005.

Accesible explanation of Schramm's coupling

• J. E. Björnberg, M. Kotowski, B. Lees, and P. Miłoś. The interchange process with reversals on the complete graph. Electron. J. Prob., 24:1–43, 2019.

Thank you for your attention.