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CHAPTER 1

Introduction



CHAPTER 1

1. Introduction

§1.1 Overview

This dissertation presents four separate chapters, all striving towards the same goal:
to understand dynamic phenomena occurring in dynamic networks and to explore the
emergence of equilibrium in a broad sense.

More concretely:

L

IT.

III.

Iv.

Chapter 2 deals with mixing times of non-backtracking random walks on a class
of graphs initially sampled according to the configuration model (with mild
restrictions on the degree sequence) and later evolving via edge rewiring.

We show that the mizing time of a non-backtracking random walk on such
dynamic random graphs asymptotically differs from the mixing time of the same
process on the initial static graph only by a multiplicative factor equal to the
tail of the distribution of a particularly simple stopping time—the first time when
the random walk steps over a previously rewired edge.

In Chapter 3, we focus on a specific kind of dynamic geometry generated by
dynamic permutations started from the identity permutation and evolving via
the application of random transpositions, possibly with additional constraints.
The process that we focus on is an infinite-speed random walk, which arises as a
distributional limit of a random walk whose stepping rate, relative to the stepping
rate of the permutation dynamics, tends to infinity as the size of the permutation
grows to infinity.

We fully characterize the mixing profile of this process. We do so for two different
kinds of dynamics, called coagulative and coagulative-fragmentative. In both
cases, we observe an unusual discontinuity in the mixing profile, different from
previously observed cut-off phenomena, occurring at a random time whose law
we identify.

Chapter 4 is in the realm of engineering mathematics. We study the communica-
tion network within a swarm of satellites that work together as an interferometer.
While in reality this is a highly dynamic problem, we show that under appropriate
assumptions it can be modelled as a static k-nearest neighbour graph.

We explore the effects of different choices of the parameter k on network connec-
tivity, network resilience, and energy expenditure within the network. We derive
a closed-form distribution for transmission costs in the swarm in a box of infinite
size and numerically estimate the correction for finite-size effects. Furthermore,
we numerically compute and heuristically explain the scaling properties of other
quantities of interest, such as the maximal and average length of the baselines of
the emergent interferometer.

Chapter 5 is focused on the fragmented field of centrality measures. We propose
a quantitative way to compare arbitrary pairs of centrality measures defined on
the same graph. The main idea is to look at the ordering of vertices induced by
the centrality measures and use this to define new quantities of interest, such as
the centrality comparison curve.
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We apply the method described in this chapter in several ways: we describe
a natural approximation scheme for difficult-to-compute centrality measures,
compare pairs of commonly used centrality measures, and propose new conjectures
based on the observed behaviour of the centrality comparison curve.

Since these chapters were written with different audiences in mind, they also
differ in their style of presentation. Chapters 2 and 3 are written to the standard of
rigour expected in mathematical journals. Chapter 4 is aimed towards the engineering
community, and hence it is written in a style similar to publications in relevant IEEE
journals. The final scientific chapter, Chapter 5, is written for researchers in complex
networks, and the style is reminiscent of Physical Review journals.

The remainder of this chapter consists of two parts: Section 1.2 serves as a brief
introduction and overview of the main topics covered in Chapters 2-5, while Section 1.3
is a guide to the overall organisation of the rest of this dissertation.

§1.2 Brief introduction to the content

This section contains a narrative introduction to the main topics covered in Chapters 2-5.
A more technical introduction is given in the introductory sections of the respective
chapters.

§1.2.1 Random walks and their mixing properties

Random walks are one of the most fundamental stochastic processes, and have been
studied in many contexts. We refer the reader to [97] for a modern introduction to this
fascinating subject. In this section, we focus on discrete-time random walks on finite
graphs. Unless explicitly stated otherwise, the word “graph” denotes an undirected
finite graph.

The most elementary example is the simple random walk on a graph G = (Vg, E¢),
which is the vertex-valued Markov chain (X (t)),y,, started from an initial vertex v,
with transition probabilities

L if vl € Eg,
P(X(t+1)=v]|X(t) =u)={ des®) if {u,v} o
0 otherwise,

where deg(u) denotes the degree of the vertex u € V. Stationary distributions are
easy to identify as long as the underlying graph is static. In particular, if G is finite,
connected, and with finite degrees, then the unique stationary distribution of (X (t)),cx,
is the distribution p*2t that places the following mass on a vertex v € Vg:

Mstat (1}) _

= deg(v).
22 )

The above definition can be modified in many ways. One possible modification is
the non-backtracking random walk (Y'(t)),cy,, where we disallow the random walk to
traverse the same edge twice right after each other. Even though (Y'(¢)),cy, obviously
depends on the last two states, it is possible to reformulate it over a different state space
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in a way that Markov property is preserved (see, for example, [92] or Section 2.2.2).
The stationary distribution of (Y'()),¢y, is #***" introduced above. This modification
is important in Chapter 2. In Chapter 3 we will work with an infinite-speed random
walk, which is a distributional limit of a random walk whose relative stepping rate
with respect to the stepping rate of the underlying dynamics tends to infinity as the
size of the graph grows to infinity.

If the random walk in question admits a unique stationary distribution, then it is
natural to ask how fast the process approaches the stationary distribution. A common

phrase used to describe this approach to equilibrium is mizing.

Total variation distance. There are multiple ways to quantify mixing. One of
them is by using the total variation distance between the distribution at time ¢ and
the target equilibrium distribution. More formally, take two probability measures 7, p
defined over a common probability space (A, ). The total variation distance between
m and p is defined as

drv(m, p) = Slelg |7(w) — p(w)],

e., it is the maximal discrepancy of the probability of an event w € 2 according to m
and p. In the special setting of Markov chains defined on a finite state space S, the
total variation distance between two probability measures 1 and v on the same finite
state space S can be expressed as:

dry (g, v Z |(x )| =Y [u(z) = v(@)]ly = max{u(4) - v(4)].  (1.1)

ACS
xES z€S

If pux(t) is the distribution of the process (X(t)),cy, at time t and p™*' is its
unique stationary distribution, then drv (px (t), u5%2%), seen as a function of ¢, evidently
quantifies the approach to equilibrium. For any € € (0,1), we define the e-mixing time
tmix(€) as the first time when drv (ux (1), p5%2%) < e. We refer the reader to [101] for a
pedagogical introduction to Markov chain mixing and to the unfinished monograph [5]
for an overview of advanced techniques and many results that are by now considered
to be folklore in the field.

Cut-off. One fascinating phenomenon related to mixing is the cut-off phenomenon.
First observed for a random walk on the symmetric group [49], the cut-off phenomenon
represents a jump discontinuity in the limiting mixing profile. Subsequently, this
phenomenon has been observed in various other settings (see the overview in [101,
Chapter 18]).

Characterising general abstract conditions that imply the presence of a cut-off is one
of the major open problems in the theory of Markov processes. The recent article [129]
identifies a general sufficient condition that implies the presence of a cut-off for so-called
non-negatively curved Markov chains. The follow-up article [130] shows a criterion
that is equivalent to the presence of a cut-off under the assumptions of sparsity and
fast mixing, which provides a unified framework that is applicable to many previously
studied models. These results use a specific quantity from information theory called
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varentropy. There is some hope that arguments based on varentropy may yield the
so-far elusive general conditions for the presence of a cut-off.

Cut-off has also been observed in the special setting of random walks on random
graphs (see also Section 1.2.2). We refer the reader to [71, Section 1.2.1] for a historical
overview of the field. We specifically point out the work in [103, 26, 21], where cut-off on
time scale log n was established for both simple and non-backtracking random walks on
a general class of sparse undirected random graphs with good expansion properties. More
recently, cut-off has been established for random graphs with community structure [75,
20], and for random graphs with an added random matching [76].

The setting of random walks on dynamic random graphs is even more demanding.
This line of research started only recently. The first step in this direction was [124],
which studies the mixing time of a random walk on subcritical dynamic percolation
on Z%. Later, in [123], the case of supercritical dynamic percolation on Z% was
considered. Along the same lines, [138] established cut-off on dynamic supercritical
Erd6s-Rényi graphs, which can be seen as dynamic percolation on the complete graph.
A different line of research was started in [9, 10], which studied the mixing properties
of a non-backtracking random walk on a configuration model equipped with rewiring
dynamics, under mild conditions on the degree sequence. The presence of a cut-off
is controlled by the rewiring rate of the dynamics, which introduces an interesting
trichotomy in the mixing profile. Chapter 2 can be seen as a direct generalisation of
this research line, with the aim to push the coupling technique implicitly introduced in
[10] to its limit and to show its applicability to a wide class of dynamic random graphs.
Chapter 3 extends the analysis in a different direction, where the underlying dynamic
geometry is disconnected, but nevertheless allows for a frequent merging and splitting
of its constituent components.

§1.2.2 Random graphs

A random graph is a graph-valued random variable. The first random graph models
were studied by sociologists in the early twentieth century [111]. Later, they were
rediscovered by mathematical biologists [137], and soon thereafter they became an
object of interest in their own right, starting with the seminal papers [53, 67]. Recently,
the interest in the field was reignited after physicists started to study emergent networks
in society and nature (see [18, 19, 115, 116, 113, 150]), a field nowadays known as
complex networks. There are many good introductory books for random graphs, and
we choose to highlight two of them: [62] for a combinatorial approach and the series
[78, 79] for a probabilistic treatment.

In this section, we will focus on sparse random graphs, which can be informally
defined as graphs where the number of edges is comparable to the number of vertices.
More specifically, we will focus on two important random graph models in their sparse
regimes, the Erdds-Rényi random graph and the configuration model.

Erd&s-Rényi random graph. There are two models commonly referred to as the
Erdés-Rényi random graph. The first, introduced in [67], can be seen as an edge
percolation on the complete graph K, where edges are kept with probability p, inde-
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pendently of other edges. We will call this the Gilbert-Erdds-Rényi graph GEFE(n, p).
The second, introduced in [53], is a graph chosen uniformly at random from all simple

graphs with M edges and n vertices. We will call this the Erdés-Rényi random graph
GFE(n, M).

Figure 1.1: Gilbert-Erdds-Rényi graph GGER(n,p) for n =50 and different values of p: 0.01
for the left graph, 0.03 for the middle one and 0.1 for the right one. Created using tools
available on https://www. networkpages. nl/.

The two models are closely related. Before exploring this connection, we need to
introduce the concept of a monotone graph property. A graph property P is monotone
if every subgraph of a graph with that property also has this property. It turns out that
the two versions of the Erdés-Rényi graph are, under mild conditions, asymptotically
equivalent with respect to the laws of monotone graph properties in the limit as
n — oo. A precise statement of this asymptotic equivalence can be found in [62,
Theorem 1.4]. A classical example of a property where asymptotic equivalence fails
is the (non-monotone) property “the graph has an even number of edges”. While for
GFE(n, M) the law of this property is degenerate and fully determined by M, for
GYFR(n,p) the law is non-degenerate. Thanks to this equivalence result, it is often
enough to study one of the two versions of the Erd6s-Rényi graph. For this reason,
we can restrict ourselves to the perspective of the “combinatorial” Erdds-Rényi graph
GFE(n, M) in the rest of this section.

Erdos-Rényi graphs can be partitioned into 3 parameter regimes, based on the
behaviour of the largest component:

(a) Sub-critical regime. In this regime, the Erdés-Rényi graph consists of small
components, which are mostly trees. It corresponds to the setting when M = cn,
with ¢ < % The size of the largest connected component in this parameter range
is Op(logn) and the graph is typically a forest.

(b) Critical window. Famously, the Erdés-Rényi graph exhibits a so-called phase
transition. The critical window corresponds to the parameter range M = 5 &
O(n?/3). The largest connected component in the middle of this regime, i.e.,
when M = 5, has size O]p(n2/ 3), and connected components are typically trees.
The precise behaviour of the Erdés-Rényi graph in the critical regime is a delicate
question, but the answer to it is not essential for this dissertation. We refer the
interested reader to the seminal paper [86], which is one of the most detailed
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studies to date of the critical Erdés-Rényi graph.

(¢) Super-critical regime. This regime corresponds to the parameter range of
M = cn with ¢ > % On an event occurring with high probability, the graph
contains a unique connected component of size ©(n), and all other connected
components are of size O(logn). More precisely, the following theorem applies:

s

0.5 1.0 1.5 2.0 25 3.0 3.5

Figure 1.2: Graph of ((s). Note that the mapping s — ((s) is monotone, ((s) = 0 for s € [0, 3],
and ((s) approaches 1 as s — oo.

Theorem 1.2.1 (Adapted from [62], Theorem 2.14). If M = cn < (}),
c> %, then GFR(n, M) with high probability consists of a unique giant component
with n[¢(c) +o(1)] edges, where ((c) € (0,1) is the positive solution of the equation
1—¢(e) = e=2¢¢(e)  and all the other connected components are of size at most

O(logn).

The super- and sub-critical regimes are connected via the so-called discrete duality
principle. This says that the non-giant components of the supercritical Erdés-Rényi
graph behave similarly to the connected components in a subcritical Erd6s-Rényi model
(see [79, Theorem 4.15] for a precise statement).

Erdés-Rényi graphs are among the most studied random graph models, and many
of their fine structural properties have been identified. Instead of reiterating these
results here, we point the reader to [36, 87, 79] for further details and references. While
the Erdés-Rényi graph is of immense theoretical and historical importance, it can be
too “homogeneous” for some practical applications. Other random graph models, such
as the configuration model, can be used to work around these limitations.

Configuration model. Much of the following is inspired by [78, Chapter 7].

In practice, we might want to model a graph of which we only know the degrees
of the individual vertices, but we have no information about the realisation of the
edges. In such cases, the configuration model is a suitable tool. Alternatively, this
model is useful in cases where we wish to impose restrictions on the degree sequence,
for instance, that all vertices have a degree larger than some constant. The original
motivation for the introduction of the configuration model in [35] was to study the
asymptotic behaviour of the number of regular graphs via a probabilistic argument.

For any degree sequence d = (d,...,d,) such that S = >""" | d; is even, we can
sample the configuration model CM(d) using the following procedure:
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1. For every vertex v € V = {1,...,n}, attach d, half-edges to v and declare all
half-edges unpaired.

2. Pick 2 unpaired half-edges uniformly at random, create an edge between the
vertices to which the half-edges were connected, and declare these two half-edges

paired.

3. Repeat step 2 as long as there are unpaired half-edges left.

AN A o
[ A 2
o e
[S 2
o 2
‘(—: -
(S 7a
(S o
(-\/ ]
o -0
LS =3
& o
& %
& S
° )

LR (VAR e

Figure 1.83: Possible initial and final states in the configuration model sampling algorithm.
Created using tools available on https: //www. networkpages. nl/.

Since S is even, the above algorithm is well-defined and terminates as long as S is
finite. The procedure above also explains the origin of the name “half-edges”: in the
construction above, we can see these auxiliary objects as stubs of edges attached to
the individual vertices that are waiting to be paired with another half-edge to create a
proper edge.

The procedure outlined above need not result in a simple graph. It can happen that
the resulting multigraph has self-loops and multiple edges, which might be problematic
in some applications. The total number of configurations (i.e., different pairings of
half-edges) with degree sequence d is given by (S — !l = (S —1)(S —3) x ... x 1,
and the law of CM(d) is the uniform law over these (S — 1)!! possible configurations.
Note that a resulting multigraph can be represented by multiple configurations, since
half-edges attached to the same vertex are indistinguishable. Consequently, CM(d) is
not distributed uniformly over all multigraphs with degree sequence d. For a multigraph
G with degree sequence d, [78, Proposition 7.7] gives the explicit probability that a
sample of CM(d) yields G. Furthermore, if we condition on CM(d) being simple, then
the resulting conditional law is the uniform law over simple graphs with the degree
sequence d [78, Proposition 7.15].

Like the Erdés-Rényi graph, the configuration model has been studied extensively
and there are textbooks that cover detailed structural results. We point the interested
reader to [62, Chapter 10], [78, Chapter 7] and [79, Chapters 4 and 7].
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§1.2.3 Dynamic permutations

Permutations are fundamental mathematical objects that have a prominent place in
many subfields of mathematics. A permutation is a bijection from a set A to itself.
Here, we will take A to be the set of integers A = {1,...,n}. Denote by S,, the set
of all permutations of {1,...,n}. If we equip S,, with the natural operation of map
composition o, then we obtain the group (S,, o), commonly known as the symmetric
group of degree n.

Introductory definitions. Before introducing the central model of this section, let
us start with some definitions. A permutation is called a cycle of size k if there exists an
element € A such that 7%(z) = = and all the other elements that cannot be obtained
by applying 7 to = are mapped onto themselves. A cycle of size 1 is called a fized point
of a permutation. Any permutation 7w € S,, admits a decomposition into (element-wise)
disjoint cycles, which is unique up to the order of composition of these cycles. This
inspires a particular way of writing down transpositions, sometimes known as the cyclic
notation, where a transposition is expressed as a composition of its constituent cycles.
Since it is customary to omit the composition operator, the permutation = € S4 that
maps 1 — 2,2 — 4,3 — 3,4 — 1 can be written as 7 = (1,2,4)(3). When the degree
of the permutation (i.e., the size of the permuted set, here n) is obvious from the
context, we can even omit the fixed points and write 7 = (124). Finally, denote by
T, C S, the set all permutations from S, that contain one cycle of size 2 while all
the other cycles are of size 1. The elements of T;, are called transpositions, since they
transpose 2 elements of A and map all the other elements to themselves.

Dynamic permutation. We will restrict our focus to a particular permutation-
valued Markov chain. This Markov chain evolves as follows. Fix n € N and start the
Markov chain from the identity permutation, Xy = Id € S,,. The transition rule is
that at time ¢ € N we sample a uniform transposition 7; € T, and compose it with the
previous permutation. In symbols, for any ¢t € N, X; = X;_1 o m, where 7, ~ Unif(T},).
We will call this Markov chain a dynamic permutation.

From a different perspective, the dynamic permutation can be seen as a coagulation-
fragmentation process on the level of permutation cycles. When we apply a transposition
that swaps two elements in different permutation cycles, these two cycles merge, while
when the two elements being swapped belong to the same cycle, this cycle splits into
two.

The stationary distribution of the dynamic permutation is the uniform measure
over S,,, and the mixing time is $nlogn + O(n) [49]. Furthermore, this model (or
more precisely, a model very closely related to it) was the first model shown to exhibit
the cut-off phenomenon [49]. Both of these results were obtained by a clever use of
the representation theory of the symmetric group. This situation was unsatisfactory to
some probabilists, who were longing for a coupling-based argument for the mixing time
(e.g., see open problems in [131]). A method explored in the textbook [5] yields the
asymptotic scaling of O(n?) for the mixing time, which is too coarse compared to the
representation-theoretic approach. A non-Markovian coupling that gives the estimate
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tmix = Cnlogn + O(n), for some constant C, was devised only much later [41]. A
different probabilistic approach that yields the estimate t,ix = O(nlogn), based on
strong stationary times, was developed earlier in [106].

Cycle structure of the dynamic permutation. An interesting question about
the dynamic permutation is the distribution of its cycle structure, i.e., the normalized
(divided by n) order statistics of sizes of cycles in the cycle decomposition of the dynamic
permutation. Already [58] gives a coupling proof that the uniform random permutation
has a cycle structure that, as n — oo, converges in distribution to PoiDir(1), the
Poisson-Dirichlet measure with parameter 1. We refer the reader to [83] for an overview
of its properties.

The PoiDir(1) measure is invariant with respect to the dynamics obtained as the
n — oo limit of the dynamics generated by the dynamic permutation. This limit
process is sometimes called the continuous coagulation-fragmentation process. While
PoiDir(1) is one of the invariant measures of the aforementioned process, it is not clear
whether it is the only one. Vershik conjectured that the PoiDir(1) measure is indeed
the unique invariant measure [143] and this conjecture was answered affirmatively
in [48]. A major breakthrough occurred in the article [135], which gives a different
proof that the PoiDir(1) measure is the unique invariant measure of the continuous
coagulation-fragmentation process. This article also shows that the PoiDir(1) structure
of cycles occurs in the dynamic permutation much earlier than the mixing time. More
precisely, there is a subset of the dynamic permutation that, in the limit as n — oo
and for any ¢ > %, attains this equilibrium cycle structure already after cn steps (see
[135, Theorem 1.1] for a precise statement).

Many ideas that became standard in the study of dynamic permutations were
introduced in [135], such as Schramm’s coupling and the representation of the dynamic
permutation as a graph growth process. These ideas are discussed further in Chapter 3
and Appendix B, where we make use of them.

Later developments. The techniques highlighted above were later expanded and
refined in different directions. For example, Schramm’s coupling was further refined in
the follow-up article [27], where a modified version of this coupling was used to study
the mixing of dynamic permutations endowed with a more general dynamics. We also
mention [29], which contains a detailed account of Schramm’s coupling. On the other
hand, group-theoretic methods were further explored in [6, 25] and follow-up articles.

Close relatives of the dynamic permutation model have been studied extensively un-
der different names: the mean-field Tdth model [142], the interchange process on the com-
plete graph (see [6, 29, 74] and references therein), or the multi-urn Bernoulli-Laplace
diffusion model [128], where our setting corresponds to a particular choice of parameters.

§1.2.4 Satellite interferometers and their communication
network

An interferometer is an extremely sensitive measurement device that exploits interfer-
ence phenomena in electromagnetic waves. We do not aim to explain the operational
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principles of interferometry in this section, and we refer the interested reader to the
monograph [141]. The features of an interferometer that are important for Chapter 4
are:

e An astronomical interferometer usually consists of multiple telescopes. These
can be, for example, multiple satellites, each of them observing the same object.
More conventionally, they are different ground-based detectors observing the
same signal.

e The relative position of the individual detectors that form an interferometer
must be known precisely. The line through the physical space that connects
the two detectors is often called a baseline. Long baselines are important for
higher resolution of the resulting image, while shorter baselines put limits on the
maximal angular size of a detectable source.

There are many complications arising from an interferometric setup of an experiment,
for example, complicated post-processing of the measured data and problems with
observation of low-luminosity sources. For Chapter 4, it is essential to know that useful
data can be obtained only when a pair of signals from different detectors is processed
jointly. This joint processing of two signals is often called cross-correlation.

One of the major complications in post-processing of interferometric data obtained
by ground-based telescopes is the influence of the atmosphere. This can vary from wind
and other meteorological mechanisms, all the way to molecular effects such as scattering
and absorption in the atmosphere. Furthermore, in some frequency bands there is
significant interference due to human-made signals. One way to avoid these difficulties
is to put the interferometer in space. A particularly intriguing idea is to abandon large
satellites, such as the recently launched James Webb Space Telescope, in favour of a
swarm of tens to hundreds of smaller satellites. One of the major drawbacks of this
approach is that the data communication network that facilitates cross-correlation of
signals is no longer trivial. The links within such a network need not be bidirectional
and may change in time.

There are numerous further complications related to data transmission, such as
data loss, various sources of noise, data routing problems, out-of-order arrival of data
packets, and many others. These problems, and the techniques used to mitigate them,
are discussed neither in this section nor in Chapter 4. If we choose not to consider these
effects, we can restrict the analysis solely to the graph induced by the communication
network.

If the swarm does not have a mechanism that enforces a particular position of the
satellites, the positions of the satellites, and therefore also the communication network,
are governed by spatial randomness. To model this type of network, we can use spatial
random graphs, which are random graphs where the vertices are embedded into some
space chosen to reflect the details of the network. In the case of a satellite swarm, a
typical choice is a finite box B C R3. Furthermore, if the motion of the satellites is slow
enough, then it suffices to consider static graphs, since changes in the communication
network over relevant time scales will be negligible.

One of the natural spatial random graph models that can be used to describe this
type of communication network is the k-nearest neighbour graph.

11

T YALAVH])



CHAPTER 1

1. Introduction

The k-nearest neighbour graph. A k-nearest neighbour graph (hereafter, k-NN
graph) is a spatial random graph constructed over a set of vertices V such that |V| > k.
Furthermore, all the vertices belong to the same metric space (B, d). For every vertex
v € V, draw k edges that connect v to its k nearest neighbours with respect to the
metric d. This model has received substantial attention, both in mathematics and in
engineering [1, 15, 16, 14, 52]. For example, [52] discusses probabilistic properties, like
the expected number of connected components, of the k-NN graph over a random set
of points.

The study of connected components in the k-NN graph has a twisted history.
Originally, engineers believed that there exist so-called magic numbers, i.e., universal
values of k that in typical situations guarantee connectivity of the k&-NN graph [94, 117].
It has been suggested that these “magic numbers” can be any of the integers between
3 and 8. A breakthrough in this line of research was made in the article [153]. The
authors were working in a setting where nodes were placed inside a square of finite size,
and their positions were governed by a Poisson point process. The authors realized
that to maintain connectivity as the area of the square (denoted by A) tends to
infinity, while the intensity of the Poisson process remains constant, each node must
be connected to a number of neighbours that grows at least as fast as log A. This
marks a departure away from the idea of a universal “magic number”. Furthermore,
the same article provides some bounds for the critical value ¢*, multiplying log A,
describing the zero-one law related to this notion of connectivity. These results have
stimulated rigorous mathematical investigation. In a series of articles [15, 16], the
authors formalize the idea that, in the setting of [153], connectivity is indeed obtained
when k is of the order log A, and first provide a much tighter bound on the critical
multiplication constant (0.3043 < ¢* < 0.5139). Later, they invented a method to
precisely compute the critical constant ¢*. Further results in these directions can be
found in [14].

From an engineering perspective, a major difference between the k-NN graph and
a graph that would result from a communication network between transmitters each
transmitting to their k£ nearest neighbours is that the transmission network would be
directed, unlike the k-NN graph. Nevertheless, k-NN graphs with undirected edges
have been used in studies of optimal data routing [32, 31, 105], wireless sensor coverage
[90, 84], wireless transmitter localisation [118, 152], or dynamical allocation problems
in 6G networks [148].

§1.2.5 Network centrality measures

Real-world networks, both directed and undirected, are often inhomogeneous, with
neighbourhoods of vertices varying substantially across the graph. This is not surprising,
since many of the phenomena modelled by these networks exhibit the same level of
inhomogeneity. A natural question arises: Since the network is inhomogeneous, are
any of its vertices more important than others?

On the other hand, what does it even mean to say that a vertex is more important
than some other vertex? Consider, for example, a friendship network among a group
of people. In this network, individuals are represented by vertices and two individuals

12
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are connected by an edge if they are friends with each other. One reasonable choice
would be to call the most important vertex in the network the one with the highest
degree, since it represents the person who has the most friends. But perhaps it is not
the popular people who are relevant for a particular study, but the people who are
members of multiple friend circles. Or we can consider it important that someone’s
friendship network is tightly-knit, and we would prefer a vertex with its immediate
neighbours to form a clique.

The ambiguity demonstrated in the previous example prevents us from defining
the network centrality measure. In general, a network centrality measure is a mapping
from the vertex set Vi to the real numbers. The details of this mapping are chosen
to reflect what being central can mean. Some popular examples of network centrality
measures are:

e Degree centrality. This is simply the degree of a given vertex. For any v € V:
R (y) = deg(v).
Similarly, it is possible to define in-/out-degree centrality for directed graphs.

o Eigenvector centrality. First defined in [96], eigenvector centrality is the
corresponding element of the left eigenvector of the adjacency matrix A associated
to the positive eigenvalue of maximal modulus, normalized so that all its elements
sum up to 1. On the other hand, other normalisation are also possible. In
symbols:

R (v) = ay,

where a is a vector such that

Vel
Amaxa’l = Aa” and Z a; = 1.
i=1

Katz centrality [91] and PageRank [122] can be seen as further refinements.

o Betweenness centrality. Introduced in [61], betweenness centrality is related

to the number of shortest paths within the graph that run through a given vertex.

It is defined as

RB(U)Z Z oy(a,b)

)
a,beVa a(a, b)

where o(a,b) is the number of distinct paths of minimal length between a and
b, and o,(a,b) is the same with the added condition that these paths contain v
somewhere between a and b. By convention, for any a,b € Vg, o(a,a) = 1 and
oq(a,b) = op(a,b) = 0. Load centrality [68] is a slight variant of betweenness.

13

T YALAVH])



CHAPTER 1

1. Introduction

& : Oo ®®
° ®®@ @@@ °° °°o °°°o o@ ®®@ ®@®®
Jes T JaSS JLET. Y
o %00 0 %0 o %00
© (>

Figure 1.4: Betweenness, degree and eigenvector centrality for the same graph. Darker
colours represent higher centrality of nodes. Created using tools available on the website
https: //www. networkpages. nl/.

Other centrality measures can be found in Appendix D or [114, Chapter 7]. To
illustrate how fragmented the field is, note that [85] lists more than 400 different
centrality measures. It does not help that results about centrality measures are
scattered across different journals in different fields. In light of this, it is not surprising
that recent comprehensive reviews were written by researchers in various disciplines,
such as computer science [34], mathematics [134], electrical engineering [146], and
social sciences [30].

There has been some effort to relate various centrality measures to each other. For
example, [54] explains the relation between degree and closeness centrality. The fact
that such a connection exists is not surprising, since many centrality measures are
correlated with each other [102, 119]. On the other hand, there are only few results
that explain these correlations. It is more common to see centrality measures compared
with respect to their suitability for a particular applied goal, such as connectivity hub
identification [108] or keyword extraction from a graph-based representation of text
[39].

Naturally, network centrality measures have a prominent place in real-world ap-
plications. For example, [2] uses centrality measures to study attack tolerance and
robustness of complex networks, [122, 40] use centrality measures in the context of
Internet search engines, and [93, 107, 149, 126] use them to study infection spreading.
Many further examples can be found in the review articles referenced above.

§1.3 Organisation of this dissertation

Here we outline the organisation of the remainder of this dissertation. The scientific
part spans Chapters 2-5. Each of these chapters is based on a different research
paper. Appendices are included right after the appropriate chapter, and are labelled by
consecutive letters. For example, Appendix B contains material relevant for Chapter 3.
After the scientific part, Chapter 6 lists some questions spurred by the research
contained in Chapters 2-5. Finally, the dissertation concludes with a bibliography,
Dutch and English summary, acknowledgements and a short curriculum vitee.
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CHAPTER

Linking the mixing times
of random walks on static and
dynamic random graphs

This chapter is based on the following article:

L. Avena, H. Giildag, R. van der Hofstad, F. den Hollander, and O. Nagy. Linking
the mixing times of random walks on static and dynamic random graphs. Stoch. Proc.
Appl., 153:145-182, 2022.

Abstract

In this chapter, which is a culmination of our previous research efforts, we provide a general
framework for studying mixing profiles of non-backtracking random walks on dynamic random
graphs generated according to the configuration model. The quantity of interest is the scaling
of the mixing time of the random walk as the number of vertices of the random graph tends to
infinity. Subject to mild general conditions, we link two mixing times: one for a static version
of the random graph, the other for a class of dynamic versions of the random graph in which
the edges are randomly rewired, but the degrees are preserved. With the help of coupling
arguments, we show that the link is provided by a specific randomised stopping time, namely,
the probability that the random walk has not yet stepped along a previously rewired edge.

To demonstrate the utility of our framework, we re-derive our earlier results on mixing
profiles for global edge rewiring under weaker assumptions, and extend these results to an
entire class of rewiring dynamics parametrised by the range of the rewiring relative to the
position of the random walk. Along the way we establish that all the graph dynamics in this
class exhibit the trichotomy we found earlier, namely, no cut-off, one-sided cut-off or two-sided
cut-off.

For interpolations between global edge rewiring, the only Markovian graph dynamics
considered here, and local edge rewiring (i.e., only those edges that are incident to the random
walk can be rewired), we show that the trichotomy splits further into a hexachotomy, namely,
three different mixing profiles with no cut-off, two with one-sided cut-off, and one with
two-sided cut-off. Proofs are built on a new and flexible coupling scheme, in combination
with sharp estimates on the degrees encountered by the random walk in the static and the
dynamic version of the random graph. Some of these estimates require sharp control on
possible short-cuts in the graph between the edges that are traversed by the random walk.



CHAPTER 2

2. Linking the mixing times of random walks on static and dynamic random graphs

§2.1 Introduction

In this chapter, we generalise and extend the techniques developed in [9, 10] to cover
a class of random graph dynamics that satisfy mild regularity conditions. Our core
result is a generic link between the mixing times on the static and the dynamic random
graph. Subject to mild conditions on the degrees of the vertices and the dynamics of
the underlying graph, we show that, up to an error that vanishes as the number of
vertices tends to infinity, the total variation distance to the stationary distribution
on the dynamic random graph is given by the total variation distance on the static
random graph multiplied by the probability that the random walk has not yet stepped
along a previously rewired edge. Phrased in symbols, we show that

DIP(t) = Poel(r > ) DI (E) + 0:(1), (2.1)

where z is the starting vertex of the random walk, £ is the starting configuration
of the random graph, D;i?'gn(t) and D§'¢'(t) are the total variation distance between
the distribution of the random walk at time ¢ and the stationary distribution for the
dynamic, respectively, the static random graph, and 7 is the first time the random
walk crosses a rewired edge (see Theorem 2.1.4 below for a precise statement). The
latter acts as a randomised stopping time and plays a central role in our analysis.

We emphasise that our approach is no longer tied to one specific random graph
dynamics. In fact, we present a general framework that can be applied to a large
class of random graph dynamics for which the degree structure is preserved, including
dynamics that depend on the position of the random walk and dynamics that are
non-Markovian. To do so we use a coupling that works well for non-backtracking
random walks. We show that (2.1) holds under general conditions that appear to be
the weakest possible, and that can be verified in specific examples.

To showcase our framework, we identify the scaling of the random walk mixing time
for three choices of the dynamics, where the rewiring is done in a certain range around
the current position of the random walk. Depending on the speed and the range of the
rewiring, the mixing time may exhibit no cut-off, one-sided cut-off or two-sided cut-off,
a trichotomy that was also found in earlier work (see Section 2.1.5 for an extensive
literature overview). Interestingly, for a class of dynamics that interpolate between
local and global (the “near-to-global” dynamics introduced in Section 2.1.3), we observe
a hexachotomy — six subregimes (see Figure 2.3 below), two of which include critical
crossover times where the mixing profile changes shape.

From a technical point of view, it is amusing to note that we are able to establish
our previous results from [9, 10] under weaker assumptions, despite the fact that we
are no longer using techniques that are tailor-made to global dynamics. Furthermore,
we believe that near-to-global dynamics is interesting in its own right, not only thanks
to its six different mixing subregimes, but also due to a non-trivial challenge of dealing
with the influence of so-called “shortcuts” (see Section 2.4.3).

§2.1.1 Model and notation

It is convenient to describe our model in terms of half-edges. Write V' to denote the
vertex set of the graph, |V| =: n the number of vertices, and deg(v) the degree of
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vertex v € V. To each vertex v € V we associate deg(v) half-edges, forming the set
H, = {hi}?igi(v). The set of all half-edges is H = J,oy H,. We denote the vertex v
for which h € H, by v(h) € V. If z,y € H,, x # y, then we write x ~ y and say that
x and y are siblings of each other. Using |X| to denote the cardinality of set X, we
define the degree of a half-edge h € H as

degg(h) = [{hi € Hypy: hi ~ h}| = deg(v(h)) — 1. (2.2)

We identify an edge with a pair of half-edges. A configuration is a pairing £ of
half-edges with the property that £(h) # h and £(§(h)) = h for all h € H. The set of all
configurations on H is denoted by Conf, and the uniform distribution on Conf is
denoted by Ucong,, . With a slight abuse of notation, we will use the same symbol ¢ to
denote the set of pairs of half-edges forming &, so {z,y} € £ means that (z) = y and
&(y) = x. Note that £ may represent a multi-graph, possibly with self-loops. A random
graph corresponding to a configuration where the half-edges are paired uniformly at
random is called the configuration model (see [35], [78, Chapter 7]). The quantities

above depend on n, but this dependence will be mostly suppressed from the notation.

We study Markov chains {(X¢, Ct) }+en,, where X; € H denotes the non-backtracking
random walk component and C; € Conf ;; corresponds to the evolution of the underlying
graph. The evolution is chosen in such a way that it does not change the degree sequence
of the graph (and consequently does not change the stationary distribution of the
random walk on the graph), and can be visualised by breaking up pairs of half-edges
and pairing them again, both according to prescribed rules. At each time t € N, we
first update the configuration and then let the walk move.

Remark 2.1.1 (Notation). Note that (X;_1,C¢_1) is the state just before the
transition at time ¢, while (X¢, Ct) is the state just after the transition at time t. ¢

Our main result concerns the total variation distance between the distribution of
the random walk component and the stationary uniform distribution on the set of
half-edges Uy, defined as

Dg?(t) = drv (Pr (X €-),Un(")). (2.3)

Here, the total variation distance between two probability measures p and v on the
same finite state space S is defined by

drv(p,v) = %Z (@) —v(@)| = Y _[u(z) = v(@)]s = sup [u(A) —v(4)], (2.4)

€S z€S ACS

We are concerned with the behaviour of D, ¢(t) for “typical” choices of x and . We
formalise the notion of typicality in the following definition:

Definition 2.1.2 (With high probability). Recall that n = |V] and let p =
Un X Ucong, - A statement that depends on the initial half-edge = and the initial
configuration ¢ is said to hold with high probability, abbreviated whp, if the y-measure
of the set of pairs (z,€) for which the statement holds tends to 1 as n — co. [
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Another important object is the first time the random walk steps along a previously
rewired edge:

Definition 2.1.3 (Randomized stopping time). Let R; be the set of edges being
rewired at time ¢, R<; := U';:l R, and let I; denote the indicator of the event that
the random walk steps along a previously rewired edge at time ¢, i.e., [; = 1 when
Xi—1 € R<; and I; = 0 otherwise. We define the randomized stopping time T as

7 =min{t € N: I, = 1}. (2.5)
]

Note that, since rewiring happens before the random walk steps, X;_1 is the position
of the random walk just before it steps over an edge that is rewired at time ¢.

For x € H and § € Confy, we denote by D3'3'(t) the total variation distance of
the random walk on the static random graph to the stationary uniform distribution
Uy at time ¢, and by Py ¢(7 > t) the probability that 7 > ¢, both given the starting
state (z,&).

§2.1.2 Mixing for general rewiring mechanisms

The main theorem of this chapter is the following statement linking the total variation
distance to the stationary distribution for the static and the dynamic version of the
random graph:

Theorem 2.1.4 (Link between static and dynamic mixing). Suppose that
t = O(logn). Subject to Conditions 2.3.1 and 2.8.4 (see Section 2.5.1), the following
holds whp in x and &:

DY (t) = Pac(r > 1) DIE(E) + 0u(1). (2.6)

Conditions 2.3.1 and 2.3.4 are regularity conditions on degree sequence and graph
dynamics, respectively. The former is standard in the literature and ensures that
the underlying graph is sparse and that the non-backtracking random walk is well-
defined. The latter, representing one of the novelties of this article, ensures that the
non-backtracking random walk is well-mixed when it steps along a previously rewired
edge and the time at which this happens does not depend on the fine details of its past
trajectory.

The proof of Theorem 2.1.4 is based on a coupling argument in which the random
walk on the dynamically rewired random graph is coupled to a modified random walk
on the static random graph that at certain random times makes uniform jumps. These
jumps correspond to the times at which the random walk steps along a previously
rewired edge. The coupling must be good enough to beat the errors in the comparison.
A key ingredient of the coupling is that the non-backtracking random walk on the
configuration model is whp self-avoiding on the scale of the mixing time.

Note that while {(X¢, Cy) }+en is Markov, any of the marginals {X;}ien, {Ct Hen
need not be. The framework we present in this chapter makes no assumptions about
{C¢}ten being Markov. This is demonstrated in Section 2.4, where ”global-to-global”
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rewiring is the only considered mechanism for which {C}}+en is Markov, while "near-to-
global” and ”local-to-global” rewiring correspond to a non-Markovian graph evolution.

§2.1.3 Application to specific rewiring mechanisms

We next consider three choices of random rewiring, referred to as local-to-global, near-
to-global and global-to-global, controlled by two parameters: (1) r,, representing the
radius of the ball around the current location of the random walk in which edges are
allowed to be rewired with an edge that is drawn uniformly at random from the set
of all edges; (2) «a,, representing the probability that an edge in this ball is rewired
per unit of time. By rewiring we mean breaking up two pairs of chosen edges into four
half-edges and tying these up at random (for details, see Section 2.4).

At every unit of time a subset of the edges is rewired. The rewiring of each edge is
always with an edge that is chosen uniformly at random from the set of all edges. For
the subset of edges that is rewired we consider three choices:

¢ Local-to-global (r, = 1):
The edge that corresponds to the current position of the random walk has
probability a,, to be rewired.

o Near-to-global (1 < 7, < Tmax):
All the edges in the r,-ball around the current position of the random walk have
probability «,, to be rewired, independently of each other.

o Global-to-global (7, = rnax):
All the edges have probability a,, to be rewired, independently of each other.

Here, Tmax is the maximal radius (see (2.12) below), provided that the graph is
connected (which happens whp under the conditions that will be stated below).

Global-to-global rewiring was considered in [9] and [10], while local-to-global rewiring
was considered in an unpublished chapter of the doctorate thesis [71]. In the present
chapter, however, we prove results under weaker assumptions. For an overview of
previous work, see Section 2.1.5. Near-to-global rewiring is new and turns out to hold
surprises:

Theorem 2.1.5 (Scaling of cross-rewired time). Suppose that lim, ., @, = 0
and t = O(logn). Subject to Conditions 2.3.1(R1) and (R3) below, the following hold
whp in x and &:

(A) For local-to-global rewiring defined in Section 2.4.2:

Pee(r>t)=o0:(1)+e ¢ ce(0,00), t=|c/an]. (2.7)

(B) For near-to-global rewiring defined in Section 2.4.3, subject to Condition 2.3.5
below:

(a) If lim, o0 a2 = 00, then

Pre(r >1t) =0:(1) + 6_02/2, c € (0,00), t=|c/\on]. (2.8)
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(b) If lim, oo v = B € (0,00), then

n

—Bc%/2
e , ce (0,1],
Paclr>0 =00+ { alye S0 =lend @9
(¢) If lim,, 00 ty2 = 0, then
Poe(r>t)=o0:(1)+e7¢ c€(0,00), t=|c/anrn]. (2.10)

(C) For global-to-global rewiring defined in Section 2.4.4:
Poe(r>t)=0(1)+e /2 cec(0,00), t=|c/\/an]. (2.11)

Note that the tail probability P, ¢(7 > t) exhibits a three-way split for near-to-global
rewiring, with an additional crossover at time ¢ = r,, when lim,,_, oz,,,r% =€ (0,00).

Condition 2.3.5 says that the empirical degree distribution converges to a limit as
n — oo, and so do its first and second moments. It implies that whp the radius (i.e.,

the typical distance between vertices) of the random graph is

logn

Tmax = [1 + OP(]-)} (212)

logv’
where v is the size-biased mean of the limiting empirical degree distribution [79,
Theorem 7.1], which is assumed to satisfy v € (1,00). Thus, for near-to-global rewiring
we can only choose

1

—_—. 2.13
log v ( )

'n = [p + 0(1)] logna pE [0’pmax)a Pmax =
Condition 2.3.5 is needed for Theorem 2.1.5(B) only. The fact that it is not needed
for Theorem 2.1.5(C) weakens the conditions in [9, 10]. We expect Theorem 2.1.5(B) to
fail without Condition 2.3.5. Namely, when the degree distribution has infinite variance,
graph distances are of smaller order than log n, and in fact are of order log log n under an
appropriate power-law assumption on the empirical degree distribution [43, 79, 81, 82].
In the latter setting, for r, = clogn we expect near-to-global rewiring to behave
similarly as global-to-global rewiring.
In order to apply Theorem 2.1.4, we need to also control D5'¢!(t). For this we use
the following result from [21], which requires additional regularity conditions stronger
than Condition 2.3.1 (see Appendix A.2 for further details):

Theorem 2.1.6 (Scaling of static mixing time). Subject to (A.3) and Condi-
tion A.2.1, the following holds whp in x and &:

1—0:(1), if t=|clogn], c<cs,

D;tgt(t) - { ox(1), if t=|clogn], ¢>c., (2.14)

where ¢, € (0,00) is the constant defined in (A.3).

Combining Theorems 2.1.4-2.1.6 we end up with the following results:
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Corollary 2.1.7 (Scaling of dynamic mixing time for local-to-global rewiring).
Consider the local-to-global rewiring defined in Section 2.4.2. Suppose that lim, o o, =
0 and t = O(logn). Subject to Condition 2.3.1(R1), Condition A.2.1 and (A.3), the
following hold whp in x and &:

(1) Iflimy, o0 ap logn = oo, then

DI ([e/an]) = 0.(1) +e7¢,  c€[0,00). (2.15)

(2) If limy, o0 ap logn = v € (0,00), then

n e ¢, c€l0,c,),
pi(lelogn) =0+ { T EERSY e
(3) Iflimy, o0 p logn = 0, then
n ]., c e 076* y
DL (lelognl) =00+ g ¢S (o) (27)

Corollary 2.1.8 (Scaling of dynamic mixing time for near-to-global rewiring).
Consider the near-to-global rewiring defined in Section 2.4.3. Suppose that lim,,_, o o, =
0 and t = O(logn). Subject to Condition 2.3.1(R1), Condition 2.3.5, Condition A.2.1
and (A.3), the following hold whp in x and §:

(1) Iflimy, o0 pry logn = 0o and
(a) lim, 00 72 = 00, then
DY (Le/Van]) = o-(1) +e /%, ce0,00). (2.18)

(b) lim,, 00 a2 = B € (0,00), then

—Bc*/2
dyn e , ce (0,1],
D% (lern]) = 0e(1) + { B2 ELO]O)- (2.19)

(¢) limy, o0 a2 =0, then
D:?;(Lc/anrnj) =o0(l)+e7 ¢ c€[0,00). (2.20)
(2) If limy, oo aprplogn = v € (0,00) and
(b) lim, o0 anr? = B € (0,00), then
e~ (/28 c0,8/4],
Dg’ygn(tclog nl) =o0.(1)+< e @e=H2 e (8/y, c), (2.21)

0, ¢ € (Cx,00).

(c) limy, o0 a2 =0, then

nggl(LclognJ) o:(1) + { 0, i g (0;7 OO’) (2.22)
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(3) If limy, 00 aprplogn =0 and
(¢) limy, o0 anr? =0, then

1, c€l0,e4),

Dﬁéﬂ(LCIOgnJ) =05(1) +{ 0, ce (e, 0). (2.23)

Corollary 2.1.9 (Scaling of dynamic mixing time for global-to-global rewiring).
Consider the global-to-global rewiring defined in Section 2.4.4. Suppose that lim,,_, o o, =
0 and t = O(logn). Subject to Condition 2.5.1(R1), Condition A.2.1 and (A.3), the
following hold whp in x and &:

(1) If limy, 00 iy (log n)? = o0, then
DI (Le/Van]) = 0.(1) + ™2, c e [0,00). (2.24)

(2) If limy, 00 avn(logn)? = v € (0,00), then

2
dyn _ e ¢ /2, cc [O, C*);
D,% (lclogn]) = 0.(1) + { 0. ¢ € (crr o). (2.25)
3) Iflim,_ o an(logn)? =0, then
( g
dyn o 1, ce [O,C*)7
D (lelogn]) = 0s(1) +{ 0 ce(c. o0 (2.26)

Note that the dynamic mixing time exhibits a trichotomy that distinguishes between
fast dynamics (regime (1)), moderate dynamics (regime (2)) and slow dynamics (regime
(3)). There is no cut-off for fast dynamics, one-sided cut-off (at ¢ = ¢,) for moderate
dynamics, and two-sided cut-off (at ¢ = ¢,) for slow dynamics.

Note that near-to-global rewiring exhibits an even richer structure with a heza-
chotomy. See Figs. 2.1-2.3 for the various scaling shapes (where the indices x and &
are suppressed).

Remark 2.1.10 (Role of Condition 2.3.4). Corollaries 2.1.7-2.1.9 do not mention
Condition 2.3.4 explicitly, even though this is needed for Theorem 2.1.4. The reason
is that the three rewiring mechanisms under consideration satisfy Condition 2.3.4, as
shown in Section 2.4. ¢

§2.1.4 Discussion

1. Each of the three choices of rewiring shows a trichotomy between fast dynamics
(anrn > 1/logn), moderate dynamics (a7, < 1/logn) and slow dynamics (a,r, <
1/logn), with r, = 1 for local-to-global rewiring, 1 < r,, < rmax for near-to-global
rewiring and r, = rmax for global-to-global rewiring. For fast dynamics the mixing
time is of smaller order than logn, which is the mixing time on the static random
graph, and so speed-up occurs. For moderate and slow dynamics the mixing time is of
order logn, and so no speed-up occurs. The one-sided cut-off for moderate dynamics
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shows that there is a competition between static and dynamic. For fast dynamics only
Conditions 2.3.1 and 2.3.4 are needed, while for moderate and slow dynamics (A.3)
and Condition A.2.1 are needed as well. For fast dynamics the scaling does not depend
on the choice of degrees, subject to the mild regularity imposed by Condition 2.3.1. On
other hand, for moderate and slow dynamics it does, because the constant c, equals
the limit as n — oo of the empirical average of the logarithm of the degrees of the
half-edges.

2. Whereas for local-to-global and global-to-global rewiring the trichotomy controls the
scaling, for near-to-global rewiring several subregimes show up. In particular, crossovers
in the mixing time occur at critical values of the scaling parameter ¢ (see (2.19) and
(2.21)). These arise from a crossover in the cross-rewired time that appears as soon
as t < r, (see (2.9)). What happens is that all edges on the r,-future of the path
can be rewired before the random walk reaches them, but only until time ¢ — r,,: for
any time s € (t — rp,,t] only ¢ — s edges are left on the future path until time ¢. The
extra condition in Condition 2.3.5 ensures that whp the r;,-balls carried around by the
random walk do not overlap significantly, i.e., short-cuts of length < r,, are negligible
until time ¢ = O(logn).

3. Regime (2b) for near-to-global rewiring corresponds to p = /. Subject to
Condition 2.3.5 we have

ci = Z p*(m)logm, (2.27)
* meN
with 1
p*(m) = N(m + Dp(m+1), me Ny, N = Z mp(m), (2.28)

meN

where p(m) = limy,—,o0 pp(m) with p, = £ 37 | Gqeg(v) the empirical degree distri-
bution (see (2.2), Theorem A.2.2 and (A.3); Condition A.2.1, which is needed for
Theorem A.2.2, implies that p(1) = p(2) = 0). By Jensen’s inequality,

Z p*(m)logm < log (Z p*(m) m> =logw. (2.29)

meN meN

Consequently, ¢, > pmax (see (2.13), (2.40) and (A.3)), with equality if and only if p is
a point mass. Thus, the cut-off threshold ¢, exceeds the maximal value of the radius,
as shown in Figure 2.3.

4. The coupling of the random walk on the dynamically rewired random graph to the
modified random walk is implicit in the proof of the main theorem in [10]. There the
main idea was that the path probabilities for the two random walks coincide for self-
avoiding paths, and it was shown that the two random walks are with high probability
self-avoiding. The crucial observation was that, on a typical configuration drawn
according to the configuration model, the random walks are self-avoiding with high
probability. The particular form of Condition 2.3.4 was motivated by this observation,
and suggests that the same results may hold when the initial graph is drawn according
to some other distribution, on which non-backtracking random walks are typically
self-avoiding.

26



§2.1. Introduction

5. The graph regularity conditions in Condition 2.3.4 are mild, but can be violated.
Consider for example a modification of the local-to-global rewiring in which the
probability «, of the half-edge X;_; being rewired at time ¢ depends on a specific
choice of X; 1, e.g. an(Xi—1) = 1/degy(X¢—1). This would lead to a violation
of Condition 2.3.4(D1). Condition 2.3.4(D2) can be violated by a graph rewiring
mechanism that at each time gives preferential treatment to some half-edges. For
example, fix a set of half-edges F' with |F| < n, and define a “local-to-F” graph
dynamics where the edge that might get rewired at time ¢ with {X;_1,Cs—1(X:—1)}
is chosen from the set of edges generated by the configuration C;_; such that each
edge contains at least half-edge from F. This obviously results in a violation of the
Condition 2.3.4(D2).

6. The scaling regimes considered in Theorem 2.1.5, Corollaries 2.1.7-2.1.9 and
Figures 2.1-2.3 are chosen so as to end up with non-trivial scaling profiles. Apart
from conditions on ¢ in terms of «, and r,, there is also the implicit condition that
t = O(logn). However, since the probability that 7 > ¢ is monotone decreasing in both
an and 1, we get trivial scaling profiles outside these regimes.

§2.1.5 Previous work

The past decade has witnessed much activity towards understanding processes — both

random and deterministic — on dynamic networks [121, 47, 59, 46, 23, 66, 7, 95, 132, 147].

Research is motivated not only by mathematical interest, but also by numerous
applications in computer science and data science. One of the emerging efforts is
concerned with the study of mixing times of random walks on dynamic networks, and
how they compare with those of random walks on static networks. The present chapter
fits within this line of research.

The article [9] introduced a version of a dynamic configuration model in which
a fraction of the edges gets rewired at each step of the random walk according to a
global-to-global rewiring mechanism. An important result in [9] was an expression for
the mixing time of a non-backtracking random walk under conditions that guarantee a
locally tree-like structure of the graph and fast dynamics. In a follow-up article [10],
the same authors extended their results to moderate and slow dynamics. In particular,
they obtained a trichotomy for the mixing time of non-backtracking random walks, of
the type as stated in Corollary 2.1.9. In the current chapter, however, we achieve this
trichotomy under weaker assumptions.

Trichotomies were also found in subsequent work. The closest to our setting is

[42], where the authors consider a dynamic directed version of the configuration model.

Contrary to our setting, for the directed graph the rewiring no longer preserves the
stationary measure, and the analysis in [42] is restricted to a rewiring mechanism
in which all the edges are freshly resampled at each step of the random walk. Two
trichotomies are derived for the worst-case total variation distance, respectively, for the
joint Markov process given by the graph and the random walk and for the non-Markov
process given by the random walk marginal. Trichotomies can also emerge in the
presence of other random mechanisms that do not directly change the graph. This is
well illustrated in [42, 144, 147], where crossovers were established for random walks
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on random graphs with various PageRank-like transitions. The results are analogous
to Theorem 2.1.4, with the role of the randomized stopping time 7 replaced by the
first time the walk gets “teleported” by a PageRank-like transition.

Mixing studies for random walks on dynamic random graphs started with [124],
which considered random walks on dynamic percolation clusters on a d-dimensional
discrete torus, i.e., a stochastic version of percolation where edges appear and disappear
independently at a given rate. In [124] and subsequent works [123, 77], mixing times
were identified for several parameter regimes controlling the rates of the random walk
and the random graph dynamics. Similar results were obtained for dynamic percolation
on the complete graph [138, 133]. One of the main difficulties with the dynamic
percolation setting is that the stationary distribution of the random walk changes over
time, which explains why results tend to be restricted to specific parameter regimes.

Some further advances were achieved in [133, 13], where general bounds on mixing
times, and other quantities such as hitting, cover and return times, were derived for
certain classes of evolving graphs under proper expansion assumptions. Typically,
random walk mixing on a dynamic graph is faster than on a static graph, although
[13] contains some (artificial) examples where the dynamics makes the mixing slower.
Speed-up of mixing times for general Markov chains was recently analysed in [45],
which also contains an overview of related results.

Unlike for dynamic graphs, mixing times of random walks on static random graphs
form a well-established subject. For the present chapter, it is important to note the
work in [103, 26, 21], where (two-sided) cut-offs on timescale logn were established
for both simple and non-backtracking random walks on a fairly general class of sparse
undirected random graphs with good expansion properties. More recently, similar results
were obtained for static random graphs with directed edges [37, 38] or with a community
structure [20].

§2.1.6 Outline

The remainder of this chapter is organised as follows. In Section 2.2 we define the
random walk and the random graph dynamics. In Section 2.3 we prove Theorem 2.1.4.
In Section 2.4 we prove Theorem 2.1.5. In Appendix A.1 we show that the joint Markov
chain of random walk and dynamically rewired random graph is irreducible, aperiodic
and doubly-stochastic. In Appendix A.2 we recall the precise form of Theorem A.2.2.
In Appendix A.3 we identify the general form of the transition matrix for rewirings and
prove that the stationary distribution for the class of “anything-to-global” rewirings is
the uniform distribution on H.

§2.2 Random graph dynamics and random walk
In this section we set up the model. In Section 2.2.1 we give a general description
of the rewiring mechanism for the random graph (specific choices will be considered

in Section 2.4). In Section 2.2.2 we define the non-backtracking random walk. In
Section 2.2.3 we define the joint process of random graph and random walk.
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§2.2. Random graph dynamics and random walk

§2.2.1 Random graph dynamics

We consider a general class of graph dynamics in which some edges are randomly
rewired at each unit of time according to a prescribed rule. First a subset of edges to be
rewired is chosen randomly, then these edges are broken into half-edges, and afterwards
the resulting half-edges are paired randomly according to a prescribed distribution.
The set of half-edges involved in the rewiring at time ¢ € N is denoted by R;.

Suppose that X;_1 =z and C;_; = £. Then, at time ¢, the above dynamics gives
rise to a distribution Q,(¢,-) on Conf . In [9], [10] a specific choice of dynamics was
considered in which @, (&,-) did not actually depend on z. In such a situation, the
configuration component forms a Markov chain itself.

§2.2.2 Random walk

We consider a non-backtracking random walk on a dynamic random graph in which
some edges are rewired at each step. By non-backtracking we mean that the random
walk cannot traverse the same edge twice in a row. Since in our model the underlying
graph is dynamic and the edges change over time, the random walk is more conveniently
defined as a random walk on the set of half-edges H. Recall that at time t € N we
update the configuration to Cy = £ and only then let the random walk make a move.
Then the random walk moves according to the transition probabilities

Ty &) ~yand E(z) # v,

) (2.30)
0 otherwise.

Pe(x,y) = {

More descriptively, when the random walk is on a half-edge = and the graph is in
configuration &, the random walk moves to one of the siblings of the half-edge that

the current half-edge x is paired with, chosen uniformly at random (see Figure 2.4).

The transition probabilities are symmetric with respect to the pairing given by &, i.e.,
Pe(x,y) = Pe(&(y), £(x)). In particular, the transition matrix is doubly stochastic, and
so the uniform distribution on H, denoted by Uy, is the stationary distribution for the
random walk process:

2
X, A

30.0)

Figure 2.4: The random walk moves from half-edge X to half-edge Xi+1, one of the siblings
of the half-edge £(X+) that Xt is paired to.

§2.2.3 Joint process

The law of the joint Markov chain (X;, Ct)ten, starting from initial half-edge = X
and initial configuration & = Cy, is given by the conditional probabilities

]P)z,f(Xt =z, Ct = C | thl =Y, thl = 77) = Qy(nv C)PC(ya Z)7 te Nv (23]—)
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with
Peg(Xo=2,Co=¢) =1, (2.32)

where the transition probabilities @ (+,-) remain to be chosen. While the joint process
is Markov, the marginal processes X = (X})teny and C = (Cy)ten need not be Markov.
Consequently, the total variation distance dry (P, (X € -), Ug(+)) is not guaranteed
to be decreasing in ¢, even when it converges to 0.

We emphasise that at each time step the graph evolution happens first and only
then the random walk makes a move.

Furthermore, note that when the graph dynamics does not depend on the random
walk, ie., Qz(-,) = Qu(-,-) for all x,y € H, the uniform distribution Uy is the
stationary distribution for the random walk, i.e., for all £ € Confy and t € N,

1
> ﬁﬂwm(xt €)=Ux(). (2.33)
reH
This can easily be seen by noting that the random walk conditioned on a realisation
of the graph dynamics is a time-inhomogeneous Markov chain for which Upy is the
stationary distribution.

§2.3 Proof of the main theorem

In this section we build up the apparatus that is required to prove Theorem 2.1.4. In
Section 2.3.1 we formulate the regularity conditions for the graph and its evolution.
In Section 2.3.2 we introduce the modified random walk, which lives on the static
random graph. In Section 2.3.3 we propose a coupling of the modified random walk
and the dynamically rewired random walk. In Section 2.3.4 we analyse the errors in
the coupling. In Section 2.3.5 we use the coupling to prove Theorem 2.1.4.

§2.3.1 Regularity conditions

In the formulation of Theorem 2.1.4 we refer to certain regularity conditions, which we
lay out next. The first set of conditions concerns the degrees of the graph:

Condition 2.3.1 (Regularity of degrees).
(R1) |H|=06(n) as n — co.

(R2) max deg(v) = dmax = 0(n/(logn)?) as n — co.
ve

(R3) deg(v) > 2 for allveV.

Condition 2.3.1(R1) ensures that the graph is sparse, and together with Condi-
tion 2.3.1(R2) guarantees that the paths of the random walk are with high probability
self-avoiding on relevant time scales (see Lemma 2.3.9 below). Condition 2.3.1(R3) is a
consistency condition ensuring that the non-backtracking random walk is well-defined.

As stated in the introduction, Condition 2.3.1 is standard in the literature, unlike
the forthcoming Condition 2.3.4. To state this new condition, we require further
notation.
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Definition 2.3.2 (Dynamic self-avoidance).

(1)

For s,t € N with s <, define [s,¢] == {s,...,t} and [t] = [1,¢] = {1,...,t}. For
reN, ty,...,t, e Nwith t; < --- <t,. <t —1, introduce a set of times

T={t1,...,t,.}, (2.34)
and sequences of half-edges
m[O,t—l] = (x07"'71’t71)7 i'[O,t—l] = ('(Z'()v"’vjtfl)v (2 35)
LIA?[T] = (i‘h e ,,@T) s .’f[r] = (i‘l, cee ,,fr) .

The sequences x(g 1), Z[o,¢—1], L[y are called dynamically self-avoiding with re-
spect to T if the sequences of vertices

(v(zo)y. - yv(xe=1))y  (V(@t-1),-- -, 0( &, -1)), (V(Z1),...,v(E)), (2.36)

are all distinct.

Recall from Definition 2.1.3 that I; is the indicator of the event that the random
walk steps along a previously rewired edge at time ¢. Let DSA(T, Z[0,t—1]> T[0,t—1]
2], T7)) be the event that (see Figure 2.5):

= Z[o,t—1]» T[0,t—1], T[] are dynamically self-avoiding with respect to T'.

—Iy=1forseTand Iy =0forse[t—1]\T.

— Co(xs) = s for s =0,...,t— 1, where Cy is the configuration at time ¢t = 0.
— Cy,(xy—1) =T fori=1,...,7.
- Co(.i‘l) :.i'i for i = 1,...,’!“.

— Xy=xzsfors=0,...,t—1.

When the event DSA(T, jo ¢—1], Z[o,¢—1]» L[s], Z[r]) Occurs, we say that the random
walk on the dynamic random graph has a dynamically self-avoiding history up
to time t. We call z(g,_1] good when degy (z;) < (logn)**e for 0 <i <t —1
and some € > 0 fixed, i.e., for all half-edges in the sequence x| ;_1j the degree is
O((logn)?*¢). A sequence z[p,t—1] that is not good is called bad.

Remark 2.3.3 (Interpretation of sequences). On the event DSA(T,z[;—1],

Zjo,t—

1> 22> Z[r)), the sequences in Definition 2.3.2 have the following interpretation:

T := {tl,...,tr} C [t— 1]
times when the random walk steps along a previously rewired edge,

Zo,t—1] = (1‘07 s a'rt—l):
half-edges the random walk visits up to time t — 1.
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Tt

T, i‘g

Figure 2.5: Illustration of the event DSA(T,x[o -1, Zo,t—1], Z[r), Z[r]) and the role of the
sequences in Definition 2.3.2. Dashed black lines show the pairing in the initial configuration,
while dashed green lines show the pairings that are seen by the random walk.

o Zjo4—1) = (To,- -, Teo1):
half-edges 7; that are paired with half-edges z; € w[g ;1) in the initial configura-
tion.

o iﬁ[r] = ((21, ce ,fr):
half-edges that are paired with x;_; at times i € T
. j[r] = (fl, ce ,i‘.,-):
half-edges that are paired with %1, ..., 2, in the initial configuration.

¢

With these definitions in hand, we can now state the conditions on the random
graph dynamics:

Condition 2.3.4 (Regularity of graph dynamics). Recall that I; is the indicator
of the event that a random walk steps over a rewired edge at time t (see Definition 2.1.3).
For allt = O(logn) and all T = {t1,...,t,} C [t — 1] the following conditions hold
(note that Iy is random given (Is)o<s<t):

(D1) For all x(94—1), T[0,t—1)> T[r), T[] a0 Ylo,¢—1), Y[0,t—1]> T[r]» Ujr) that describe dynam-
ically self-avoiding histories with respect to T,
[P(I; = 1| DSA(T, x(0,t—1), Z(0,t—1]> L1r» Fr]))
—P(I; = 1| DSA(T, yjo,1—1) Yjo,t—11» I 1)) | = 0(55)

logn

(2.37)

where the bound is uniform in the histories.

(D2) For all x(g -1}, T(0,t—1]> T[r], T[] that describe dynamically self-avoiding histories
with respect to T,

drv(P(Cy(wi—1) € - | DSA(T, 1o 4—1), T(o,4-1], Bp)> Tpg) N {Te = 13),Un () (2.38)

= (57

where the bound is uniform in the histories.
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In case (D1) and (D2) cannot be verified for all sets of sequences that describe a
dynamically self-avoiding history with respect to T, the following suffices:

(D3) If (D1) and (D2) hold for x(g—1), T(0,t—1)> T[r]s Tr) and Yjo,e—1]5 J[0,t—1]> i) U]
that describe dynamically self-avoiding histories with respect to T for which x(g ;_)
and yjo,t—1) are good, but not necessarily hold for those histories for which g ;_1
and yjo,t—1) are bad, then the path X4 of the random walk on the dynamic
random graph traced until time t satisfies:

P (X[0,t-1] is bad) = o(i57)- (2.39)

Part (D1) states that the times at which the random walk steps over a rewired edge

are almost independent of the fine details of the random walk, provided it has a good

dynamically self-avoiding history. Part (D2) states that a random walk with a good

dynamically self-avoiding history is close to being mixed right after it steps over a

rewired edge. The error terms of order o(1/logn) are chosen such that we can carry

out the estimates in Lemma 2.3.9 below. Part (D3) ensures that good dynamically
self-avoiding histories are typical.

To identify the scaling of the mixing time for near-to-global rewiring in Corol-
lary 2.1.8, we need an extra regularity condition:

Condition 2.3.5 (Regularity of degree distribution). Let p, := %ZUEV Odeg(v)
denote the empirical degree distribution. We require that:

(R1*) limy 00 pn = p, pointwise for some probability distribution p on N.
(R2%) limy o0 D pmen MPn(m) = D7, ey mp(m) < oo.

(R3*) limyyo0 2. pneny M2Pn(m) =3, oy m*p(m) < oo.

The size-biased mean minus one of p is

> men mp(m)

and is assumed to satisfy v > 1.

We may interpret v as the average forward degree of a uniformly chosen half-edge,
which plays the role of the mean offspring in the branching-process approximation of
the local limit of the configuration model. In view of Condition 2.3.1(R3), the condition
v > 1 amounts to the requirement p # ds.

§2.3.2 Modified random walk

We define a modified random walk, denoted by (Y3):en, as a random walk on a static
random graph that at certain random times makes uniform jumps. Formally, we have
a sequence (J;)en of random variables adapted to a filtration (F;):en, taking values
in {0, 1} according to a pre-specified distribution on {0, 1}". For fixed ¢ € N, J; is seen
as the indicator of the event that the modified random walk makes a uniform jump at
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time ¢t. The law of the modified random walk (Y;)¢en on € that starts from the initial
half-edge = = Yp, which is adapted to (F%)ien, is given by the conditional probabilities

PRt (V=2 |Yia =y, i =1, Je = i)

mo , Pe(y,z) if j, =0, (2.41)
=PrYi=z|Yiei =y, Ji = ji) = f( ) it .t_ teN,
TH] ity =1,
with
Pred(Yp =a)=1. (2.42)

Note that, according to the definition, neither (J;):en nor the pair (Y7, Ji)en needs to
be Markov, but (Y;):en is Markov conditionally on a realisation of (J)ten-

Uniform jumps of the modified random walk can be rephrased in the following
form. Let Y/ be a uniformly chosen half-edge, independent of the random walk path
and the jump times. If J; = 1, then we choose a uniform sibling of Y/, say y, and set
Y; = y. Since Y] is uniform and one of its siblings is chosen uniformly at random, the
resulting half-edge is distributed uniformly on H. Even though Y} is already a half-edge
chosen uniformly at random, working with its sibling (which is also a half-edge chosen
uniformly at random) will come in handy in the coupling argument in Section 2.3.3.

As an analogue of 7, we define o to be the first time that the modified random
walk makes a uniform jump, i.e.,

o:=inf{t e N: J, =1} (2.43)

§2.3.3 Coupling of modified and dynamically rewired random
walk

We couple the law P, ¢(X; € -) of the random walk on the dynamic random graph, with
initial half-edge « and initial configuration £, to the law Pﬁgd(ﬁ € ) of the modified
random walk. We want the coupled random walks to stick together as much as possible.
When the two random walks make different steps, we say that the coupling of the
two random walks has failed. Until the coupling fails, the times at which the random
walk on the dynamically rewired graph makes a step over a previously rewired edge
correspond to the times at which the modified random walk makes a uniform jump.

Definition 2.3.6 (Coupling to a modified random walk). Let X; be a non-
backtracking random walk starting in the initial state (x, &), where x € H, £ € Conf y,
and Y; be a modified random walk on £ starting in x. First, define a sequence of
auxiliary random sets (A¢),cy,- Call A; the set of active half-edges at time t. Let Ao
be the set consisting of the initial half-edge of the random walk and its siblings, i.e.,
Ao = HU(I)

Define the coupling of the non-backtracking random walk X; and the modified
random walk Y; at any time ¢t € N by the following rules:

(a) The coupling is successful, unless it has been declared failed.

(b) If £(X¢—1) or any of its siblings belong to A;_1, then declare the coupling as
failed.
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(c) If degy (Xy—1) > (logn)?te (recall that n = |V|), then declare the coupling as
failed. If Condition 2.3.4(D3) is not needed, then this rule is suspended (see
Remark 2.3.7 below for further details).

(d) If the coupling has not yet failed, then maximally couple the distribution of I,
conditionally on the history of the random walk and the rewired edges seen by
the random walk, to the distribution of J;, conditionally on the values of the
indicators Jy, ..., J;—1. The following three outcomes are possible:

(a) If the coupling of the conditional distributions of I; and J; is successful
and I; = J; = 0, then create A; as a union of £(X;_1) and all its siblings
with A;_1. Let the random walk on a dynamic graph make a move and set
Y, = X;.

(b) If the coupling of the conditional distributions of I; and J; is successful and
I = J; = 1, then maximally couple the distribution of Cy(X;_1), i.e., the
half-edge paired with X;_; in configuration C;, conditionally on the history
of the random walk and I; = 1, to the distribution of Y}:

(a) If the coupling of C;(X;_1) and Y] is successful, and neither Cy(X;_1)
nor any of its siblings is already contained in A;_;, then add &(X;_1)
and all its siblings, along with Cy(X;_1) and all its siblings, to A;—; in
order to obtain A;. Phrased in symbols:

A=A UE(X ) U{h e H: b~ &(X1)}
U Ot(Xt—l) U {h €cH: h~ Ct(Xt—l)}~ (244)

Let the random walk on the dynamic graph make a move, and set
}/t = Xt-
(b) Otherwise, declare the coupling as failed.
(¢) If the coupling of the conditional distributions of I; and J; is not successful,

namely if I; # J;, then declare the coupling of the two random walks as
failed.

(e) If the coupling has failed let X; and Y; evolve independently.
|

Remark 2.3.7 (Failure of the coupling after a high-degree half-edge is
encountered). In Lemma 2.3.9 we will see that failure of the coupling as described
in rule (c) of Definition 2.3.6 is needed only when Condition 2.3.4(D3) comes into
play. This will only happen for one of the three examples in Section 2.4, namely,
near-to-global. ¢

§2.3.4 Failures in the coupling

Remark 2.3.8 (Possible failures). At each time ¢ € N, the random walk and the
coupled modified random walk try to avoid stepping on the active half-edges A;_1. The
coupling of these two random walks fails in four cases described in Definition 2.3.6:

(a) In step (b):
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(a) if the coupling of C;(X;—1) and Y is not successful,
(b) if the two random walks step over a half-edge in A;_;.

(b) In step (c), if the coupling of I; and J; is not successful.
(c¢) In step (b), if the pair of X;_; in the starting configuration is already in A;_1.
(d) In step (c), if the random walk encounters a half-edge X;_; with a high degree.

Failure cases (b) and (c) correspond to the situation in which the random walks do
not have dynamically self-avoiding histories. Consequently, the random walks have
dynamically self-avoiding histories before the coupling of the two random walks fails.
Failure case (a) corresponds to the situation in which the conditional distribution of
C(X;—1) is too far from the uniform distribution in total variation distance. Failure
case (b) corresponds to the situation in which the conditional distribution of the times
at which the random walk on the dynamically rewired graph and the conditional
distribution of the times at which the modified random walk makes uniform jumps are
far from each other in total variation distance. Finally, failure case (d) corresponds
to the situation when during the graph exploration the random walk encounters a
half-edge with an anomalously high degree. ¢

The next lemma states that these failure events are unlikely up to logarithmic times
when Conditions 2.3.1 and 2.3.4 hold for the random walk on the dynamically rewired
random graph:

Lemma 2.3.9 (Coupling estimates). Suppose that t = O(logn), and that Condi-
tions 2.3.1 and 2.3.4 hold for the random walk on the dynamically rewired graph. For
alll <s<tandall T, ={s1,...,8:} C[s—1], fix a sequence of half-edges

Ts =Ts sTs =T
L5 s—1)> Z[0,s—1]7 T[] L)) (2.45)

that describes a good dynamically self-avoiding history with respect to Ty (see Defini-
tion 2.3.2). Consider the modified random walk for which the jump distribution has
conditional distribution

E”E‘E’d(JS =1|Jy =0 fors €[s—1\T,,Jo» =1 for s" € Ty)
= Poe (I = 1| DSA(To,afy 3, 003 05) ). (2.46)
Then, whp in x and &,
drv (Pr(X, € ), PRI(Y; € 1)) = 0.(1), (2.47)
and, with o as defined in (2.43),
Poe(T > t) =Pred(o > t) + 0.(1). (2.48)

Remark 2.3.10 (Jump distribution of the modified random walk). Observe
that (2.46) describes the jump distribution of the modified random walk at any time
1 < s <t for any set of previous jump times T in a non-anticipating manner. If the

sequence of half-edges in the event DSA(T%, z%s_l], j%s_l] , j‘:[‘:] , i:[j;é]) in the right-hand
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side of (2.46) is not compatible with the initial state (x, &) (i.e., when the conditioning
is on an event of probability zero), then we set the right-hand side of (2.46) equal to
zero. The proof below uses an annealing argument in which the “mismatched” events
play no role. ¢

Proof of Lemma 2.3.9. Let IP’CO“ple denote the law of the coupling of the two non-
backtracking random walks descrlbed in Section 2.3.2 with Xg = z and Cy = . Also,
use F' € N to denote the time at which this coupling fails. Due to Condition 2.3.1(R3),
these random walks are always well-defined. Since the two random walks agree up to
the time F', that is until the coupling fails, we have

m upl
v (Pee(Xe € ), PRV, € 1)) < PLIPE(F <t). (2.49)
So, in order to prove the claim it suffices to show that, whp in x and &,
couple
PR (F < 1) = 0x(1). (2.50)

To achieve this, we use an annealing argument on the initial graph and the initial
location. Recall that = Ug X Ugony,,, and let

u couple
POl =N " u(x, §) POEPE. (2.51)

We will show that
Peouple(F < t) = o(1) (2.52)

by exploring the initial configuration using the paths of the random walk and its
coupled modified random walk until the coupling fails at time F.

(a) At time s = 0, choose a half-edge € H uniformly at random. Set Xo =Yy ==
and Ao = H,(,), the subset of H consisting of z and its siblings.

(b) At time s € N, first explore the half-edge to which X,_1 = Y;_; is paired in the
initial configuration £, then let the coupled random walks evolve in accordance
with Definition 2.3.6, and update A, accordingly.

This exploration process covers the part of the graph seen by the random walks, along
with the parts affected by the rewiring at the positions of the random walks, and stops
as soon as the coupling of the two random walks fails.

We will carry out the proof in a setting where Conditions 2.3.4(D1) and (D2)
hold. At the end of the proof we will briefly comment on the changes required when
Condition 2.3.4(D3) comes into play.

Suppose that the coupling of the two random walks has not failed before time s.
Failure at time s can occur in the following three cases (see also Remark 2.3.8):

(a) The coupling of I and J; fails in step (c¢) of Definition 2.3.6.
(b) The coupling of Cy(Xs_1) and Y/ fails in step (b) of Definition 2.3.6.

(¢) The random walks jointly step over a half-edge that lies in A;_; in either step (b)
or step (b) of Definition 2.3.6.
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For case (a), we note that, since the distribution of J; for the modified random
walk is given by (2.46), Condition 2.3.4(D1) implies that the probability of coupling
failure is o(1/logn).

For case (b) we note that, by Remark 2.3.8, before the coupling of the two random
walks fails, the random walk has a dynamically self-avoiding history. By Condi-
tion 2.3.4(D2), the total variation distance between the conditional distribution of
Cs(Xs-1) and the uniform distribution Uy is o(1/logn). Since Y is also distributed
uniformly on H, the probability of the event in case 2 is o(1/logn).

For case (c), we first need an upper bound on the size of A;_;. Each time we
explore the initial configuration, we add at most dy,a.x half-edges to the set of active
half-edges. In case a rewiring occurs, then we add at most 2d,,,x half-edges to the set
of active half-edges. This gives us the following crude bound:

|As—1| S 35dmax~ (253)

For a fail event in step (b), we see that the probability that Cs(Xs_1) € As_1 is smaller
than

|As_1] 3sdmax
] +o0(1/logn) < K
since the random walk has a dynamically self-avoiding history before the coupling of
the two random walks fails (see Remark 2.3.8), so the total variation distance between
the conditional distribution of Cs(Xs_1) and the uniform distribution Uy is o(1/logn),
by Condition 2.3.4(D2).
For a fail event in step (b), we see that the probability that Cy(Xs_1) € As—1 is
smaller than

+o(1/logn), (2.54)

|As—1| < 35dmax
|H| —4s+4 ~— |H|—4s+4’
since up to time s we form at most 2s — 2 pairs in Cy, of which s — 1 on the random

walk path and an additional s — 1 if rewiring occurs at each step up to time s.
The above estimates give us

(2.55)

couple _ 65dmax 1
P (F75|F>s—1)§|H‘_4s+4+o<logn). (2.56)
Taking a union bound up to time ¢, and using that by assumption ¢ = O(logn),
dmax = 0o(n/(logn)?) (Condition 2.3.1(R2)) and |H| = ©(n) (Condition 2.3.1(R1)), we
get
3t(t + 1)dmax
|H| — 4t

Since this bound holds for the annealed quantity P<°U"Ple(F < ¢), using Markov
inequality we get for the quenched probabilities the desired claim that

Peovple(F < ¢) < o(1) = o(1). (2.57)

PORPE(F < t) = 0,(1). (2.58)

In case we rely on Condition 2.3.4(D3), a fourth possible failure of the coupling
shows up, namely, if the random walk encounters a half-edge of degree larger than
(logn)?*¢. The probability of this failure is 0o(1/logn) by Condition 2.3.4(D3). The
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estimates for the other possible failures carry over, because if the coupling did not fail
at some time s due to a meeting with a high-degree half-edge, then the random walk
path traced up to time s is good and we can apply the same arguments as above.
Finally, note that events {7 > ¢} and {o > ¢} can be expressed as finite unions
of events of the type {X; € -} or {¥; € -}, respectively. Since (2.47) bounds the
total variation distance between P, (X, € -) and P;‘fgd (Y; € -), the claim in (2.48)
follows. O

§2.3.5 Link between dynamic and static

In this section we prove Theorem 2.1.4. Recall from Section 2.3.2 that for any
fixed T = {t1,...,t,} C [t], the modified random walk conditionally on the event
J(T) ={Js =0fors € [t]\T,Js = 1for s € T} is a time-inhomogeneous Markov
chain that makes random-walk steps at times s € [¢t]\ T and jumps to half-edges chosen
uniformly at random at times s € T

We start by two observations about Pﬁgd. Conditionally on T' C [¢] being non-empty,
we know that o < ¢ by definition (recall eq. (2.43)), and so the random walk at time ¢

on a graph satisfying Condition 2.3.1 is well-mixed for any starting x € H,£ € Conf .

Expressed in symbols, this means that
Pod(y, € - | o <) = Un(-). (2.59)

On the other hand, since the modified random walk up to time ¢ conditionally on the
event {o > t} is the same as the random walk on the static graph, for any € H and
& € Conf g, we have

drv (PR (Y €| 0> 1),Un () = D3(t). (2.60)

Now we just combine our previous results. Using the triangle inequality twice, we
obtain

drv (PRe(Y: € ), Uk (-) <PRe(o > t) dry (PRe(Ye € - | o > 1), Un ("))
+ PR o < t) doy (PR(Y, €10 <t),Un(), (2.61)

and

drv (P2ed(Ys € ), Un () > Pred(o > t) doy (PR (Y, €| 0 > 1), Un("))
—Pred(o <t) doy (Pret(YVi € | o <t),Un(-). (262)

Inserting (2.59) and (2.60) into the previous two inequalities, we get the equality
drv (PReN(Y: € ), Uk () = Pt (o > t) DI (). (2.63)
Using Lemma 2.3.9, we see that, whp in x and &,
DER(t) = Pae(T > 1) D2 (1) + 0.(1), (2.64)

which concludes the proof of Theorem 2.1.4. O
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§2.4 Applications of the general framework

In Section 2.4.1 we introduce three choices of rewiring. In Sections 2.4.2-2.4.4 we
identify, for each of these choices, the scaling of the probability that the random walk
does not step along a previously rewired edge, which settles Theorem 2.1.5.

In Appendix A.1 we show that each of the three choices of rewiring leads to an
irreducible and aperiodic joint Markov chain for the random walk and the random
graph.

§2.4.1 Three choices of rewiring

We explore rewirings that fit into a larger scheme of random graph dynamics, namely,
where the decision of which edges to rewire depends on their distance to the current
position of the random walk.

Definition 2.4.1 (Sets of edges to be rewired). Recall that the configuration
¢ is a pairing of all the half-edges (which induces a set of edges) and H is the set of
all half-edges. By abuse of notation, in Section 2.1.1 we introduced the expression
{a,b} € £, a,b € H, to mean that the half-edges a, b form an edge in the configuration
& For any € € Confy, h € H and r, € N, define the following sets of edges:

Localg(h) := {{h, g} € &},
ke H: [P(Xt+p=k|Xt_1:h,§ﬁxed)>0
Neare ., (h) := ¢ {k,l} € &: for 0 < p <1y,
le H: 1=¢(k)
(2.65)
|

In words, Locale (h) is the edge to which the half-edge h belongs and Neare ., (h) are
the edges that can be reached after r,, — 1 steps by the non-backtracking random walk
when the graph is in configuration ¢ (and is not evolving). Obviously, Neare (k) is
equivalent to Localg (h).

Figure 2.6: Illustration of the sets in Definition 2.4.1. The red box denotes the current position
of the random walk. The red edge forms the local set, which is also the near set with r, = 1.
The red and green edges form the near set with v, = 2. The red, green and orange edges form
the near set with r, = 3.

With the above notation we can define the dynamics:
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Definition 2.4.2 (Random walk with (K;)-to-(L;) rewiring). Recall that X; 1
is the position of the random walk before the transition at time ¢t and C;_; is the
configuration of the random graph before an update at time ¢. Let (K;),cy, (Lt),ey
be sequences of sets of edges, which can be different at each time ¢. Define the random
walk with (K;)-to-(L;) rewiring as the following process:

(a) At each time ¢ € N, for each edge e € K; draw a Bernoulli random variable Z;
with parameter «,,, independently of everything else.

(b) (a) If Zg =1, then select edge e for rewiring.
(b) If Zg = 0, then edge e will not be rewired.

Write R; to denote the set of edges that get rewired at time ¢.

(¢) (a) If |R¢| > |Lt \ Ry|, then break-up all the edges in R; U L; into half-edges and
re-pair them at random. More formally, pick %\Rt U L;| different half-edges
(the half-edges forming R; U L;) and order them randomly. Also order
randomly the half-edges not chosen in the previous step. The new pairing is
generated by pairing the successive elements from the first and the second
ordered sets described above.

(b) Otherwise, for every e € Ry, choose ¢’ € L;\ R; uniformly at random without
replacement. Denote the set of all edges €’ chosen in the previous step by
R;}. Break up R; into half-edges and order them randomly. Do the same
with R;. Just as in (a), the new pairing is given by the successive elements
of the first and the second ordered set.

The new pairing of half-edges obtained in either (a) or (b) above is the new graph
configuration Cj.
(d) The random walk moves from X;_; to X; on the evolved graph C;.
[ |

Remark 2.4.3 (Sets of edges generated from a configuration). When in the
sequel we write L; = € € Conf , we mean that the set of edges L; is generated by the
configuration &, which is a pairing of the entire set of half-edges H. ¢

§2.4.2 Local-to-global rewiring

In this section we focus on a rewiring mechanism that is called local-to-global. Using
the language of Definition 2.4.2, this would be a rewiring with K; = Local¢c,_, (X:—1)
(see Definition 2.4.1) and L; = C;_; (see Remark 2.4.3). Observe that the set K is
explicitly dependent on the position of the random walk X; 1 before the transition at
time ¢t occurs. For £,n € Confy and z € H, define

e €M) = n(€(x)) and [§\ 1] =2,

] (2.66)
0 otherwise.

Q& m) 1{

Then the transition matrix for the random graph from configuration £ to configuration
1 when the random walk is at position x equals

Qx(fvn) = (]- - an)I(ga 77) + anQ?(&vn)v (267)
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where I(¢,n) = 1if n = &, and I(£,n) = 0 otherwise, i.e., I is the identity matrix.
The first term of (2.67) captures the situation when rewiring does not happen and
the graph remains the same. On the other hand, the off-diagonal symmetric matrix
QI (&, ) in the second term represents the possible evolution of the graph by local-to-
global rewiring. Note that the only possible transitions between graph states are those
where the two configurations £ and n differ in exactly two pairs of half-edges. The
condition {(n(x)) = n(£(x)) in (2.66) says that rewiring always happens at the position
of the random walk. The value IHI%2 comes from the fact that at time ¢ the rewiring
mechanism can choose to pair the half-edge X; to any half-edge chosen randomly from
H\{X;—1,C—1(X¢—1)}, which is a set of size |H| — 2.

Since Qf is symmetric for all x € H, we see that the measure Ucopy,,, defined by

UC’oan (C) : !

is the stationary distribution for QX for any = € H. This implies that Ucons,, is also
the stationary distribution for @, for all z € H.

Remark 2.4.4 (Symmetry of transition matrix for graph dynamics). Local-
to-global rewiring is one of the examples where the transition matrix is symmetric.
Symmetry does not hold generally, even within the restricted class of “something-to-
global” rewirings. Still, for such rewirings the transition matrices are always doubly
stochastic. For more details see Appendix A.3. ¢

Using this fact, we have the following result for the joint Markov chain:

Proposition 2.4.5 (Stationary distribution). For any a, € [0,1], Ug X Ucony,,
is the stationary distribution for the random walk with local-to-global rewiring with
parameter ou,.

Proof. Recall from Section 2.2.2 that P, is the transition matrix for the non-backtracking
random walk on the graph n. Since Uy is stationary for P, for any n € Confy, and
Ucong,, is stationary for Q, for any z € H, it follows that for any y € H and n € Conf y,

Z Z UH(fE)UCoan (5) PJE,&(Xl =y, C1 = 77)

zeH e Conf

=3 Y Un(@)Ucons,, (§) Qu(& )Py, y)

zeH {cConfy

(2.69)
= Un(@) Py(z,y) D Uconfy (§) Qul(&,m)
xeH EcConf y
= Ucons, (1) Y, Un () Py(2,y) = Ucons,, M)Un (y)-
zeH
O

It is not obvious that the joint Markov chain is irreducible and aperiodic. In
Appendix A.1 we show that this is nonetheless the case when «,, € (0,1), and so the
distribution of the joint Markov chain at time ¢ converges to Uy x U Confy a8 T — 00.
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An important implication is that the distribution of the random walk alone at time ¢
converges to Uy as t — oo. Indeed, for any x € H, £ € Confy and t € N, we have

DER(t) < drv (Poe((Xe,Ch) € ), Un X Ucon, (+)) (2.70)

and since the right-hand side tends to 0 as t — oo, D;iyén(t) also tends to 0 as ¢t — oo.
On the other hand, this argument does not automatically imply that Difgn(t) is non-
increasing in t.

We are now ready to prove the scaling results stated in Theorem 2.1.5(A) and

Corollary 2.1.7:

Proof of results in Theorem 2.1.5(A) and Corollary 2.1.7: For fixed t = O(logn), fix
some T' = {t1,...,t,} C [t — 1] and some x[g;_1}, T[ot—1], T[] and T}, that describe
a dynamically self-avoiding history with respect to T. Conditionally on the event
DSA(T, z,t—1], Zj0,t—1], L[r], Z[r] ), Tt—1 cannot have been rewired before time ¢. Indeed,

by construction the half-edges that are rewired before time ¢ are z;, —1,...,2¢, 1,
Tty—1y---,Tt,—1, X1,---, %, and Zy,...,T,, while x;_; is not equal to any of these. So
we have

P(I; = 1| DSA(T, z(0,t—1)> T[0,t—1]> Z[s)» T}s]))
Localg, ,(Xt-1) _ ~ ~
=P(z, = 1| DSA(T, 2[o,t—1): Z(0,t—1]> B]> Fr])) = - (2.71)
Since this holds for any choice of w1}, Z[0,+—1], #[;] and Z|;}, Condition 2.3.4(D1)
holds with zero error. As a consequence, Condition 2.3.4(D1) is trivially satisfied.
Moreover,

P(Cy(w1-1) € - | DSA(T, m(o,¢-1), T(o,t—1]s 1), L) VL = 1}) = Un\ {2, 1,01 (we-1)}

(2.72)
because after rewiring, the half-edge x;_1 cannot end up being paired with itself or the
half-edge it was paired with before. This gives

_ 2
=]
(2.73)

drv (P(Cy(x4—1) € - | DSA(T, 2(0,4—1], T{0,t—1]s B Zrp) N {Le = 13),Un ()

Since this holds for any choice of x(g 1}, Z[9,+—1], ;] and Z[;), Condition 2.3.4(D2)
holds with error O(1/n).

On the other hand, the event {7 =t} is the same as the event {min{s € N: R, =
1} = t}, since when a rewiring occurs the random walk steps over a rewired edge with

probability 1. This implies that, for any z and &,
P, e(r >t [ SA(t) = (1 —ay)" = e HHoDlont, (2.74)

where SA(t) is the event that the random walk is self-avoiding until time ¢. The first
equality comes from the requirement that none of the edges the random walk steps
over until time ¢ gets rewired, the second equality uses that lim,, .. a,, = 0. Since

lim P, ¢(SA(t)) =1 whp uniformly in ¢ = O(logn), (2.75)

n— oo
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we obtain the scaling in Theorem 2.1.5(A). (The proof of (2.75) was given in [10,
Lemma 3.1] for global-to-global rewiring, but easily carries over to local-to-global and
near-to-global rewiring.) Given Condition 2.3.1(R1), we can use Corollary A.2.4, which
combined with (A.3) yields Corollary 2.1.7. O

§2.4.3 Near-to-global rewiring

In this section we focus on near-to-global rewiring. In view of Definition 2.4.2, this is
a rewiring with K; = Nearc, , ,, (X¢—1) (recall Definition 2.4.1) and L, = C,_1 (see
Remark 2.4.3) at any time ¢. Just like in the previous example, this is also a rewiring
mechanism where the sets K; are dependent on the current position of the random
walk.

The layout is the same as in the previous section, the main difference being the
presence of the additional parameter r, that controls the size of the set of edges that
are being considered for rewiring at each unit of time. We will see that this parameter
controls the trichotomy. We only consider r,, = O(logn), since the expected diameter
of the configuration model is of order logn (see (2.12) and [79, 80]). For r, = o(logn)
the behaviour is dominated by the local properties of the graph dynamics and is similar
to that for the local-to-global rewiring studied in Section 2.4.2. On the other hand,
once 1, = ©O(logn) we get a significant contribution from a certain “boundary term”
in the computation of the tail probability P(r > ¢ | SA(t)), and we find a behaviour
that is more similar to the global-to-global rewiring studied in Section 2.4.4.

First, we claim that the random walk is again irreducible and aperiodic:

Proposition 2.4.6 (Irreducibility and aperiodicity). Non-backtracking random
walk with near-to-global rewiring is aperiodic and irreducible.

Proof. In Appendix A.1 we show that the joint Markov chain with local-to-global
rewiring is irreducible and aperiodic. Since near-to-global rewiring admits all the
transitions that are admitted for local-to-global rewiring, the proof carries over.  [J

Next, we claim that the stationary distribution is again uniform:

Proposition 2.4.7 (Stationary distribution). For any o, € [0,1] and r, =
O(logn), Ung x Ucony,, is the stationary distribution for the random walk with near-to-
global rewiring with parameters o, ry,.

Proof. Apply Proposition A.3.2 to establish that Uc,ny,, is stationary for the chosen
graph dynamics. After that the rest of the proof carries over from Proposition 2.4.5. O

We are now ready to prove Theorem 2.1.5(B) and Corollary 2.1.8. First we
settle Condition 2.3.4(D2) for good histories. After that we identify the asymptotics
of P(7 > ¢ | SA(t)) and settle Condition 2.3.4(D1) for good histories. Both are
tricky because they force us to investigate the possible occurrence of short-cuts in the
configuration (see Figure 2.7). The key ingredient in the proof is that short-cuts are
unlikely when ¢ = O(logn) and 7, < (1 — €)pmax logn for some £ > 0, which requires
the error term in Condition 2.3.4(D1). We finally settle Condition 2.3.4(D3). At the
end we put the pieces together and wrap up the proof.
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Figure 2.7: Illustration of shortcuts for the mear-to-global rewiring with r, = 3. A non-
backtracking random walk starts on half-edge Xo and moves along the dotted red path. Green
crosses denote edges that might be rewired in the first step of the rewiring. Note that green
crosses are not only on edges that contain the half-edges X1 and X2, but also on the edge that
contain the half-edge X5, which will be stepped over after more than (r, — 1) steps.

Proof of Condition 2.3.4(D2). Because the rewiring is done with the global set, we
have

P(Cy(z1—1) € - | DSA(T, z(0,1—1)> F[0,t—1]> Z[r)» Zpr)) N {Te = 1}) = U\ {2 1,Co_1 (20 1)}>

(2.76)
and, just as in (2.73),
_ L 2
dryv (P(Ce(we-1) € - | DSA(T, (0 1—1) Zjo,e—1)» Br)s Frg) N {L = 1}), Un (+)) = T
(2.77)
Thus, Condition 2.3.4(D2) is satisfied. O

Identification of P(7 >t | SA(t)). On the event SA(t), for 1 < k <1 <t, let S;7 be the
indicator of the event that there is a short-cut of length < r, between the half-edges
visited by the random walk at times k and [, i.e., a connection not running along the
path of the random walk itself. Abbreviate SH™ (t) = (S;})i<r<i<¢- Then, for any

m7£a

P, (7 >t | SA(t), SH™ (1))

(t—rn)+ itrn i—1 o t i—1 o
ST an TR ] (- e e 0T
i=1 i=(t—rn) 4 +1

(2.78)
This equality comes from the requirement that from time 1 until time (¢ — r,, )+ none
of the r,, half-edges on the future path must be rewired, while from time (¢t —r,)+ + 1

until time ¢ none of the r,, half-edges on the future path until time t must be rewired.
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Rewrite (2.78) as

1
Pye(r > £ SA), SH™ () = (1 — o) 770 3l=(=rm)slle=(t=ra)s 1]

. (2.79)
X (1 - an)X ! (t)a
with
(t—rn)+ i4r, i—1
=D D > S+ Z Z ZS’""
i=1  l=i+1k=1 i=(t—rp) 4 +1 l=i+1 k=1
(2.80)
i=1 k€(0,1)
Le(i, tA(i+Tn)]
The first factor in (2.79) equals
exp (= [1+0(1)] a,t?), t < Ty,
( znt’) ) (2.81)
exp ( —[1+o(D)] ap[rn(t —rn) + 57"2]), t>r,,

and produces the scaling in Theorem 2.1.5(B) (recall (2.75)). We therefore need to
show that the second factor in (2.79) is negligible. For this it suffices to show the
following:

Lemma 2.4.8 (Bound on number of short-cuts). Subject to Condition 2.5.5,
X" (t) = 0 whp uniformly in t = O(logn) and r,, < (1 — €)pmax logn for some € > 0.

Proof. Recall that SA(t) is the event that the random walk is self-avoiding until time ¢.
Consider the ball B;(z) of radius ¢t around the starting point « of the random walk.
Recall that, conditionally on SA(t), (2.2) implies that the probability for the random
walk to choose a t-step self-avoiding path consisting of half-edges h= (ho,...,ht—1) in
Bi(x) equals

1
g dem (2.82)

Condition on . Note that SA(t) is equivalent to the event that all half-edges in h are
distinct, which we assume from now on.

It is helpful to distinguish between disjoint short-cuts and non-disjoint short-cuts.
A disjoint short-cut between two half-edges h; and h; is a short-cut that does not use
any of the other half-edges in h. Not all short-cuts are disjoint. Indeed, a disjoint
short-cut gives rise to other short-cuts that are counted in ), _, ., S,7, which we
call non-disjoint. For example, for r, > 2, if there is a disjoint short-cut of one edge
between h; and h; 4, then there necessarily is a short-cut between h; and h; 5 also.
The point is that x"™(¢) = 0 precisely when there are no disjoint short-cuts. We must
also bring the graph dynamics into the picture.

We call a disjoint short-cut a disjoint (s, ¢, j, k)-short-cut when the r,,-neighbourhood
of the random walk at time s creates a disjoint short-cut consisting of k edges between
h; and hj;. This is only possible when s < i < s+ 7, and k < r,, since otherwise
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h; would not be in the r,-neighbourhood of the random walk at time s, and when
j > 1+ ry, since otherwise the path of k-edges would not be a short-cut.

We aim to show that, for 7, < (1 — €)pmax logn and £ > 0, the probability that
there exists a disjoint (s, , j, k)-short-cut vanishes as n — oco. To do so, we rely on
the first-moment method. We make crucial use of the fact that the configuration
model is the stationary distribution under our graph dynamics. This implies that,
conditionally on f_i, all other half-edges at time s are paired uniformly at random, so
that we can use configuration model estimates. Given E, the expected number of
disjoint (s, 1, j, k)-short-cuts is bounded by (see [79, Proposition 7.4])

deg (h; )degH(h ) ~k-1

n 9
b

[1+0(1)] (2.83)

with

by =0, —O(logn),  Up=uvy b (2.84)
where v, is the size-biased mean of the empirical degree distribution p,, (recall (2.40)),
£, is the sum of the degrees (= number of half edges), and the error term o(1) is
uniform in £ < C'logn. The quantities in (2.84) introduce corrections that come from
the fact that, conditionally on h only a subset of size é of the half-edges is randomly
paired at time s. Due to Condition 2.3.5, the sum over 1 < k < r,, < (1 — €)pmax logn
of this expression is bounded by (max;<;<; degy (h;))>n=/2 for n large enough. Thus,
for r,, < (1 — €)pmaxlogn, by a union bound over 1 < i, j < ¢, the probability that
there exists a disjoint short-cut before time ¢ is bounded by

r t2( max deg (h-)>2n75/2. (2.85)
m\i<icy  oHVT

Since t = O(logn), we can use an annealing argument to show that, subject to
Condition 2.3.5, max;<;<; degy (h;) < t* whp. Indeed, let h; denote the half-edge to
which h; is paired, so that degy (hiy1) = degy (h;). Then, the distribution of deg g (h;)
is the size-biased degree distribution minus 1. By Condition 2.3.5, the mean of this
size-biased distribution is uniformly bounded, so that by the Markov inequality the

probability that degg(hi+1) > B is at most C/B for any B > 0 and some C' < oo.

Hence the probability that max;<;<; degy (h;) > t? is at most Ct/t? = o(1).
Since r,,t = O(logn), we conclude that the probability that x™ (¢) > 0 is whp at
most
Fat®n /2 = o(1), (2.86)

as required. O

We can now complete the identification of P(7 > ¢ | SA(t)). By Lemma 2.4.8,
P.e(T >t | SA(t), SH™(¢)) is asymptotically equal to the expression in (2.81) whp,

uniformly in 7, < (1 — &)pmax logn and ¢t = O(logn). Taking the expectation w.r.t.

SH™ (t), we get that the same is true for Py ¢(7 >t | SA(t)). Taking the expectation
w.r.t. z, £ as well, we conclude that the same is true for P(7 > ¢ | SA(t)), as required. O
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Proof of Condition 2.3.4(D1). For all paths that describe a dynamically self-avoiding
history with respect to T' C [t — 1], the probability that at time ¢ the random walk
steps along a rewired edge is

P(I; = 1| DSA(T, xo,1—1), Z(0,t—1]> Er]s Br))) = Brnt + Ent (T Tj0,0— 1) Zjo,4—1] Liv]> Epr])
(2.87)

with (recall ¢, from (2.34))
Bt =1—(1—ay) 7t (2.88)

being the probability that the t'" edge is rewired when it is in the range of the random
walk path, and e, (T, 2(0,t—1]; Z[0,4—1]> L[r)> T[r)) = 0 is the contribution due to short-
cuts. Note that 3, ; is independent of (T, zg¢—1], T[o,+—1), f[r], Z[), so that to verify
Condition 2.3.4(D1), we only need to bound &, (T, 2[g,t—1], Zjo,4—1]> L[r]> T[r])-

To identify ey (T, 2[0,t—1], Z[0,t—1]> L[r], T[] ), WE Write

en,t (T 2(0,t—1), T[0,t—1]> T1r» Tp)) (2.89)
= (1~ Bny) E[[l — (1= )" O] | DSA(T, 2(0.4—1» (o, —1]> (s F]) | s

with
(t—rn)

X5 ( }: Sy, (2.90)

where ey, (T, %[0,t—1], Z[0,t—1], Z[r], Z[r]) is the probability that the t* edge is rewired
due to a short-cut that puts it in the r,-neighbourhood of the location of the random
walk at some time k < t — r,, but is not rewired due to a rewiring on the path of the
random walk. The crux of the argument is to show that the event DSA(T, zjo ¢,
T[o,—1), T[], Tp)) affects a negligible amount of half-edges. After that we are in a
situation where we can once again apply configuration model estimates, as in (2.83).
The event DSA(T, z[o,4—1], Z[o,+—1]> L[r]> Z[r)) implies certain restrictions on the pair-
ing of half-edges for every s € [0, —1]. These restrictions can be of two kinds: they can
pair two half-edges with certainty or with a probability that depends on the fine details
of the rewiring dynamics. In the near-to-global case these probabilities are generally
close to 1. Denote by H; the (partially) random set of half-edges that are paired by the
event DSA(T, (g 4—1), T[0,t—1]> L[,], T]) at times. The following observation is crucial:

Lemma 2.4.9 (Random pairings outside H;). Conditionally on DSA(T,x —1],
T[o,4—1), T[], T[p)), the half-edges in H \ Hy are paired and rewired randomly at any time
5 € [0,t —1]. Furthermore, Hy; C H', where H' = (x94—1) U Z[o,¢—1) U Z[y) U Tp).

Proof. Since the graph is initially drawn according to the configuration model, and the
configuration model is the stationary distribution of the graph dynamics, we see that
on the set H \ H; the pairing is uniformly at random. Because the paired half-edges in
H; are fixed, they do not affect the half-edges in H \ H;. Let us clarify the possible
restrictions implied by DSA(T, z(o 1], Z[o,+—1], T[], T[y)) at time s:
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(a) Edges already traversed by the random walk can get stuck in the configuration
seen by the random walk. More formally, edges {X,, C;(X,)} with ¢ < s need not
be a part of the near-set Nearc, |, (X,—1) for any time p > s. This concerns
half-edges in Zjo,t—1] T[0,t—1] and :f?[r].

(b) Edges that are traversed at time ¢ with ¢ > s and ¢ ¢ T must not get rewired
before the random walk crosses them. This concerns half-edges in x[o ;1) and

Z0,e—1]-

(c) Edges that are traversed at time ¢ with ¢ > s and ¢ € T can (but need not) get
rewired before the random walk crosses them. If they get rewired just before the
random walk crosses them and near-sets at times < ¢ do not contain Z,, then
{zq,Zq} and {Z4, £, } must remain paired until time g. This concerns half-edges
in zp-1), 5[07t—1]7£[r] and Zpp-

Observe that only the edges that consist of half-edges in 1], T[0,t—1], Z[r], T[r) can
be fixed. If we take the union of all these half-edges H’, we get a crude upper estimate
on H; that is valid for all s € [0,¢ — 1]. O

Next we estimate the number of half-edges that are influenced by the restrictions
implied by DSA(T7 Lo,t—1]s f[07t_1] y i’[,.], :E[T])

Lemma 2.4.10 (Estimate of influenced half-edges). Conditionally on DSA(T,
T[o,t—1], T[0,t—1], B[r)» T[p)), Hs satisfies the estimate |Hy| = O(t) for any s € [0, — 1].

Proof. In view of Lemma 2.4.9, it suffices to bound the number of half-edges in the
sequences g ¢—1], fo,t—1], T[], Z[r], namely, |[H'| = O(t). The sequences x[y ;1] and
T[o,—1) each contain ¢ — 1 half-edges by definition. The numbers of half-edges in Z,
and Z[,) depend on the set 7' C [t — 1] of times when the random walk steps over a
rewired edge. Pick T' = [t — 1] to see that &, and ,; both contain at most ¢ — 1
half-edges. Summing the four contributions, we see that indeed |H'| = O(t). O

We are now ready to apply configuration-model estimates:

Lemma 2.4.11 (Bound on number of short-cuts). Subject to Condition 2.5.5,
conditionally on DSA(T, x(o 1], Z[0,t—1], Z[r], T[r])s X2"(E) = O whp uniformly in t =
O(logn), 1y < (1 — €)pmax logn for some € > 0, and (o 4—1), T(o,t—1], T[r]5 T}r)-

Proof. Observe that x7(¢) > 0 implies the existence of a (s, 1, j, k)-short-cut at some
time s € [0,¢ — 1]. In Lemma 2.4.8 we proved a result about rarity of these short-
cuts where we assumed only Condition 2.3.5. The statement of the current lemma
furthermore assumes that the event DSA(T', (o t—1], Z[o,+—1]> L[r], T[r]) OCCUTS.

In Lemma 2.4.9 we have shown that at any time s € [0,¢ — 1] the conditioning on
DSA(T, x(0 41, Z[0,t—1]> Z[r), T[y) only affects the pairing of some half-edges in H,. In
Lemma 2.4.11 we gave an estimate of |H,| for any s € [0,¢— 1]. These two results bring
us into the same setting as we had in the proof of Lemma 2.4.8, namely, we see that
configuration model estimates hold (recall (2.83)). Therefore, by the same argument
as above, given that r,,t = O(logn), we once again claim that the probability of
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X4 (t) > 0 is at most

2
rpt? (  Joax | degH(asl)) n=s/2, (2.91)

Since Condition 2.3.4(D1) concerns sequences x[y ;1) that are good, we have

2+
| Jnax degpy(x;) < (logn)=™e, (2.92)
and so
rat?((logn)*+)*n =</ = o(1), (2.93)
as required. Note that x5~ (t) < x™(t) (compare (2.80) and (2.90)). O

Now we see that the contribution of the En,t(T>x[O,tfl]y:E[O,tfl]yj[r]ai'[r]) term in
(2.87) is O(n=5/2) and therefore Condition 2.3.4(D1) holds. O

Proof of Condition 2.8.4(D3). Observe that, for t = O(logn),
P (X[g 1 is bad) =P (I1 < i < ¢: degH(Xi) > (logn)**™®)
< Z (degy (X;) > (logn)?*e)
1<i<t
-y E[degH(ji)}
2 (logn) (2.94)
max; <i<; E[degy (Xi)]
B (logn)?+e

= (g

where we use that maxi<;<¢ E[degy(X;)] is finite by Condition 2.3.5. Since € > 0,
Condition 2.3.4(D3) follows. O

Completion of the proof of Theorem 2.1.5(B) and Corollary 2.1.8. We already verified
Condition 2.3.4, and have shown that P(7 > ¢ | SA(t)) is asymptotically equal to the ex-
pression in (2.81). Furthermore, by (2.75), SA(t) occurs whp, uniformly in ¢t = O(logn).
This completes the proof of Theorem 2.1.5(B). Finally, given Condition 2.3.1(R1), we
can again use Corollary A.2.4, which combined with (A.3) yields Corollary 2.1.8.

O

§2.4.4 Global-to-global rewiring

In this section we focus on global-to-global rewiring. This choice was already explored
n [9], [10], with the minor difference that in the present chapter the parameter a, is
the probability that an edge gets rewired per unit of time, while in [9], [10] it was the
fraction of edges that get rewired per unit of time. This difference has no impact on
the scaling of the mixing times. Global-to-global rewiring corresponds to the choice
K; = L; = Cy_1 (see Remark 2.4.3) for all ¢ in Definition 2.4.2. Unlike for the previous
examples, now the rewiring is independent of the position of the random walk, so the
graph dynamics becomes Markovian.
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As before, the use of Corollary A.2.4 depends on Condition 2.3.1(R1). The proof of
Theorem 2.1.5(C) uses that for all z and &,

Poc(m>t]SA®) = [J(1—an) =exp (= [L+0(1)] fant?).  (2.95)

i=1

The first equality comes from the requirement that up to time ¢ each of the half-edges
on the future path of the random walk up must not get rewired. We thus obtain the
scaling in Theorem 2.1.5(C) (again recall (2.75)). Given Condition 2.3.1(R1), we can
again use Corollary A.2.4, which combined with (A.3) yields Corollary 2.1.9.

Irreducibility and aperiodicity of the rewiring was settled in [9]. The fact that the
stationary distribution is the configuration model is settled by Proposition A.3.2, in
combination with an argument analogous to Proposition 2.4.5. It remains to establish
Condition 2.3.4.

Proposition 2.4.12 (Graph dynamics regularity for global-to-global rewiring).
Global-to-global rewiring satisfies the graph-dynamics regularity conditions formulated
in Condition 2.3.4.

Proof. Since any edge can get rewired at any time, we have

P(Iy = 1| DSA(T, z(0,1—1]» T[o,t—1]> B[r) Tpr])) = X

no

(2.96)

where we use that the edge crossed at time t has had exactly ¢ opportunities to
get rewired. Since this holds for any choice of xg;_1), jo,i—1], £} and T[], Condi-
tions 2.3.4(D1) follows with zero error. Moreover, since a half-edge can get rewired
to any half-edge except itself and its current pair, we know that P(Cy(zi—1) € - |
DSA(T, x(0,t—1, Z[0,t—1]> Z[r], T[r) N { I = 1}) is the uniform distribution on H \ {z;_1,
Ci—1(x¢—1)}, which gives

_ 2
=]
(2.97)

drv (P(Cy(x4—1) € - | DSA(T, (0,11, T{0,t—1]s B Zrp) N {Le = 13),Un ()

Since (2.97) holds for any choice of x ;—1}, T[o,t—1], Z[r], Z[r], Condition 2.3.4(D2) also
follows. O

Remark 2.4.13 (Comparison with previous results). The proof in [9] and [10]
required a condition analogous to Condition 2.3.5, while in the present proof this is no
longer needed. ¢
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APPENDIX A

A. Appendices of Chapter 2

§A.1 Irreducibility and aperiodicity of local-to-global
dynamics

In this section we show that the random walk with local-to-global rewiring is irreducible
and aperiodic. This ensures that the total variation distance Dy ¢(t) converges to 0 as
t — oo for fixed x € H, £ € Confy and ay, € (0,1). Our proof builds on the proof of
irreducibility of the switch chain on multigraphs given in [51].

Proposition A.1.1 (Irreducibility and aperiodicity). The random walk with
local-to-global rewiring (X, Ci)ien (see Section 2.4.2) is irreducible and aperiodic for
any initial state (x,£) € H x Confy and any choice of o, € (0,1).

Proof. Let V. = {vy,...,v,} and assume that deg(vi) < deg(ve) < -+ < deg(vy).
Identify the set of half-edges H with [|H|] = {1,...,|H|}, such that the half-edges
1,...,deg(v1) are associated to vy, the half-edges deg(v1) + 1, ..., deg(v1) + deg(va) to
vg, and so on. Let vf,...,v5, € V be the odd-degree vertices. We fix a configuration
& € Confy such that each vertex has the maximum number of self-loops, i.e., each
vertex v € V with even degree has %deg(v) self-loops, each vertex v € V with odd
degree has 1 (deg(v) — 1) self-loops, and there is exactly one edge between every pair of
odd-degree vertices v),_;,vh, for i =1,...,k (see Figure A.1). We will show that the
pair (1,&) € H x Confy is accessible from any pair (z,£) € H x Conf y by allowed
moves for the random walk with local rewiring.

%

Figure A.1: The configuration &.

First we show that, for any « € H, (1,&p) is accessible from (z, &), by considering
two different scenarios:

(a) Suppose that x is on a self-loop and &y(z) = 2’. We first move to (1,&;) from
(1,&p) by rewiring the half-edges x,z’, 1,2 where £, and &; agree on all the edges
except that & (1) = 2’ and &;(2) = . After that we again move to (1,&p) from
(1,&) by rewiring 1,2, x, 2’ (see Figure A.2).

(b) Suppose that z is not on a self-loop, i.e., it is on an edge between two odd-degree
vertices. We first move to (2/,&y) without rewiring, where 2’ € H is on a self-loop.
After that we apply the procedure in item 1 to (2, &p).

Next, we show that for any (z,&) € H x Conf  with £ # £, we have access from
(z,€) to (y,&), for some y € H. To do this, we show that we can move from (z,&) to
some (y,n) € H x Confy such that the configuration 7 has more edges in common
with & than £ has, i.e., |€N&| < |nN&|, by considering the two scenarios:

(a) Suppose that x is on an edge that is not in &y, i.e., £(z) # o(x). Then we move
to (y,n) by rewiring the half-edges z, £(x), & (), £(éo(x)), where € and 1 agree

54



§A.1. Irreducibility and aperiodicity of local-to-global dynamics

1@2 @% .:<> %1@2 @

Figure A.2: Mowve from half-edge x on a self-loop to half-edge 1 in &y. The red colour indicates
the position of the walk.

on all the edges except that n(z) = () and n(£(x)) = £(&(x)) and y ~ ().
Since 5(z) = &o(x), we have |¢ N €| < |11 &| — 1.

Suppose that x is on an edge that is in &, i.e., {(x) = §(z). Let y € H be a half-
edge such that £(y) # &o(y), £(z) = 2’ and &(y) = ¢/'. Since deg(v) > 2 for all v €
V, in the graph given by £ there is a cycle of edges {y,v'}, {1, ¥1}s - {Ur, ¥ }
with v(y") = v(y1), v(yk) = v(y) and v(y}) = v(y;41) fori =1,..., K — 1. Let
n € Confy be the configuration that agrees with £ on all the edges except that
n(z) =y" and n(y) = «’, so that the edges {y1,¥1},...,{Ux, ¥y} are present in n
as well as in &. First we move from (z, &) to (y1,7n) by rewiring z, 2’,y,3’. Then
we make K moves, from (y;,n) to (y;+1,n) for i = 1,..., K, where yx11 =y
without rewiring. After that we move from (y,n) to (y1,&) by rewiring x, z’,y, v/,
and finally we traverse the cycle again without rewiring to reach (y,¢) from
(y1,€) (see Figure A.3). Now y is on an edge that is not in &y, so by applying the
procedure in item 1 we can increase the number of edges we have in common

By applying these procedures, we can reduce the number of edges that are not in &;.
So, we can go from any (z,£) € H x Conf gy to (y,&) for some y € H, and then apply
the above procedure to reach (1,&p).

o—I—0

xI L
4 >2 gf N

Figure A.3: Moving from (x,€) to (y,n) by using a cycle. The red colour indicates the position
of the walk.

To show that we can access an arbitrary state (x, ) from (1,&p), we first note that
we can access (y, &), for any y, from (1,&y) by relabelling the half-edges and using the
first argument above. Then we see that we can access (x,&) from (y, &) for any y by

using the above strategy of reducing the edges and using the cycles to move around.

Hence, the Markov chain is irreducible. Since, by traversing the self-loop without
rewiring, we can reach (1,&p) from itself in one step, we see that the Markov chain is
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also aperiodic. O

§A.2 Cut-off in the static setting

In order to use the results of [21], we need to assume the conditions stated there:
Condition A.2.1 (Additional regularity of degrees).
(R1**) dpax = max,cy deg(v) = n°d as n — oo.

(R2*%)

ﬁ =w ((loglog |H|)2) /\3/2 =w ! n — 00
A3 log [H]| ’ AsvAL Vieg|H| |’ ’

where

M= o 3 log(degn ()

z€EH

1
A = ] > llog(degy (2)) = Ai|™,  m=2,3.
zeH

(R3**) deg(v) > 3 for allve V.

Conditions A.2.1(R1**) and (R2**) are technical and proof-generated. It might be
possible to relax them via a truncation argument [28]. Condition A.2.1(R3**) ensures
that the random walk does not behave deterministically and that the configuration
model is connected whp. Note that (R1**) and (R3**) are considerably more stringent
than (R2) and (R3) in Condition 2.3.1.

As shown in [21], the following holds:

Theorem A.2.2 (Scaling of static mixing time). Subject to Condition A.2.1,

sta 1—o0.(1), if limsup, . t/thk <1,
,Dxt,ft (t) = ’ . . . - stat (Al)
0:(1), if liminf,, o t/E5020 > 1
where
=1+ 0s(1)] & logn Ve € (0,1), (A.2)
with 1/¢5% = ﬁ > . log(degy(2)) € (0, 00).
If, in addition,
lim cffat = ¢4, (A.3)

n—r oo

then Theorem A.2.2 yields Theorem 2.1.6.

Remark A.2.3. We are aware of the fact that Condition A.2.1 is in [21] used to prove
a much stronger statement than Theorem A.2.2 that is related to an exact computation
of the cut-off window. Therefore, if we are interested only in proving Theorem A.2.2,
weaker conditions might suffice. ¢
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Combining Theorem 2.1.4 and Theorem A.2.2, we obtain the following corollary:

Corollary A.2.4 (Link between static and dynamic). Suppose t = O(logn).
Subject to Condition 2.3.1(R1), Condition 2.3.4 and Condition A.2.1, the following
holds whp in x and &:

Poe(r > t) +0p(1), if limsup,, . t/6 <1,
D¢ () = ] - (A.4)
’ 0:(1), if Hming, oo /65520 > 1.

§A.3 Transition matrix for graph rewiring

Recall Definition 2.4.2, where we have introduced the general class of rewirings consid-
ered in this chapter. In this appendix we provide a general expression for the transition
matrix of the graph dynamics. Furthermore, we explore the conditions required for
this transition matrix to be doubly stochastic.

Proposition A.3.1 (Transition matrix for (K;)-to-(L;) rewiring). The transition
matriz for the rewirings in Definition 2.4.2 is

| K|
Qine =3 (=) B M)t 3 QT (A.5)
k=0 {el,...,ek}GKt

The matriz element Qg‘_’L‘ (n, &) that represents the rewiring of the edges in the set X

that realises the transition from graph state n to graph state € is given by

1 if & is accessible from n
P [X]-1 by rewiring all edges in X,
X0, €) = Q2 T (1Ll = [Le NV K| — )
i=0
0 otherwise.
(A.6)

Observe that the matrix given by (A.5) is a sum of multiple terms. Let us explain
the meaning of these terms through the example of the general term

(1 — ) eIk Qk Z Qﬁijﬁ;k}. (A7)
{e1,...,ex }EK,

First, the factor (1 — a,, )%/~ represents the probability of |K;| — k edges not getting

rewired, and its counterpart a® represents the probability of k edges getting rewired.

The sum runs over all k-tuples from K;, and the matrix Qﬁﬁ_ik}

possible rewiring of the k-tuples of edges we are summing over.
The Markov chain transition matrix must be stochastic. Let us check this by
an explicit computation. Take an arbitrary graph state n. In the row that lists the

represents the
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probabilities of all the possible transitions from 7, we get the following contributions:

k—1
2* H (ILel = [Le M K| — )

- K|
S Qe (n6) = Z(l—awm"“aﬁ( k)
£eConfy k=0 H (‘Ltl — |Lt ﬂKt\ — Z)

=0

- an) =1
(A.8)
The combinatorial factor (‘Ktl) counts the different ways of choosing k-tuples from
. Since the entries in QK‘_)L‘ (n,€) are chosen to be the reciprocal of the number of
accebslble states, it is not surprising that they sum up to 1. The factor 2* comes from
the ability to break up an edge into two ordered sets of half-edges.
Observe that the matrix defined by (A.5) has a “binomial” structure, but that it is
not of the form

Q.9 = TT (- )l + Q). (A9)

ecX

Clearly, (A.9) would be correct if we would draw e’ € R} in Definition 2.4.2 with
replacement, when the state space for the rewiring of |X| edges would have size
21X Hli(ll(|Lt| —|LiNK¢|). In the current setting, where we draw e’ without replacement,
the state space for the rewiring of | X| edges is smaller, namely, size 2!X| HL)__((lfl(|Lt| -
|L: N K¢| — @), due to the removal of already drawn edges.

While we have observed that the transition matrix is stochastic, it is doubly
stochastic only subject to additional conditions. For the purpose of this chapter, we
need the following fact:

Proposition A.3.2 (Double stochasticity of (K;)-to-global rewiring transition
matrix). The transition matriz given in (A.5) is doubly stochastic for Ly =&, in the
sense that edges in L; are generated by pairing & of the whole set of half-edges H (recall
Remark 2.4.3).

Proof. The proof is by explicit computation. Choose an arbitrary graph state £ and
count the contributions to the sum over the row corresponding to transitions leading
to &:

=

- fjl o IL0HI =20 =2
Q. €) = D1 —an>'Kt‘k“k( ) = ‘
t t n k k—1
EeConfy k=0 (|Lt|—|Ltht|—’L)

2

(A.10)
The term (|H| — 1 — (2| K| — 1) — 24) is based on the following observation. We are
counting possible pairs of half-edges where we see a difference in & compared to 7.
This way we get the whole set of half-edges |H|, without the considered half-edge itself
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and without all but one half-edge in K;. Rewiring cannot create an edge between
half-edges that gave rise to K3, and the term —1 arises from the one half-edge from K;
the considered half-edge is paired with in £. The term —2¢ again arises because we are
drawing without replacement. Now observe that 2|L;| = |H| and L; N K; = K;. Apply

the binomial theorem to get the claim. O
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CHAPTER

Mixing of fast random walks on
dynamic random permutations

This chapter is based on the following article:

L. Avena, R. van der Hofstad, F. den Hollander, and O. Nagy. Mixing of fast random
walks on dynamic random permutations. arXiv preprint arXiv:2403.00094, 2024.

Abstract

We analyse the mixing profile of a random walk on a dynamic random permutation, focusing
on the regime where the walk evolves much faster than the permutation. Two types of
dynamics generated by random transpositions are considered: one allows for coagulation of
permutation cycles only, the other allows for both coagulation and fragmentation. We show
that for both types, after scaling time by the length of the permutation and letting this length
tend to infinity, the total variation distance between the current distribution and the uniform
distribution converges to a limit process that drops down in a single jump. This jump is
similar to a one-sided cut-off, occurs after a random time whose law we identify, and goes
from the value 1 to a value that is a strictly decreasing and deterministic function of the time
of the jump, related to the size of the largest component in Erdés-Rényi random graphs. After
the jump, the total variation distance follows this function down to 0.



CHAPTER 3

3. Mixing of fast random walks on dynamic random permutations

§3.1 Introduction and main results

§3.1.1 Target

The goal of this chapter is to identify the mixing profile of a fast random walk on a
dynamic random permutation, where fast means that the random walk instantly achieves
local equilibrium, i.e., fully mixes on the cycle of the permutation it sits on before the
next change in the permutation occurs. The focus is on two types of dynamics for the
permutation, both starting from the identity permutation and consisting of successive
applications of random transpositions. The first type — called coagulative dynamics —
imposes the constraint that transpositions leading to fragmentation of a permutation
cycle are ignored. The second type — called coagulative-fragmentative dynamics — does
not impose this constraint. A major feature of dynamic random permutations is that
they represent a disconnected geometry, which marks a departure from the setting that
was considered in earlier work.

We show that for both dynamics, after scaling time by the length of the permutation
and letting this length tend to infinity, the total variation distance between the current
distribution and the uniform distribution converges to a limit process that makes a
single jump down from the value 1 to a value on a deterministic curve and subsequently
follows this curve on its way down to 0. The aforementioned curve is strictly decreasing
in time and is related to the size of the largest component in the Erdos-Rényi random
graph. The jump down to this curve, which is similar to a one-sided cut-off, occurs
after a random time whose law we identify. This type of mixing profile is different from
that of previously studied models. The law of the drop-down time and the function
describing the deterministic curve are different for the two types of dynamics. Visual
representations of the mixing profiles are given in Figs. 3.1 and 3.3, while simulations
are shown in Figs. 3.2 and 3.4.

The model analysed in this chapter is a first step towards understanding the
behaviour of a simple random walk on a dynamic permutation. This process is, despite
its apparent simplicity, difficult to analyse in detail, especially when the stepping
rate of the random walk is commensurate with the transposition rate of the dynamic
permutation. A key tool in our analysis is Schramm’s coupling [135]. While this
coupling was used previously to study the cycle structure of a dynamic permutation at
a fized time, we adapt the arguments in a way that allows us to study the evolution of
cycles over a time interval of diverging length.

The remainder of this section is organised as follows. Section 3.1.2 provides
background and recalls earlier work. Section 3.1.3 fixes the setting and introduces
relevant definitions and notations. Section 3.1.4 lists some preliminaries for Erdds-
Rényi random graphs that are needed along the way. Section 3.1.5 introduces a graph
process associated with the dynamics that serves as a tool for analysing the dynamics.
Section 3.1.6 contains two main theorems, one for each type of dynamics, describing
the evolution of the total variation distance between the current distribution of the
random walk and its equilibrium distribution, which is the uniform distribution on
[n] = {1,...,n}. Section 3.1.7 discusses the importance of the main theorems, places
them in their proper context, and provides an outline of the remainder of the chapter.
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TVD
/

/

v

scaled time 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
steps

Figure 3.1: The red curve is a typical evolu- Figure 3.2: Simulations of the evolution of the
tion of the total variation distance for an in- total variation distance for 10% different reali-
finitely fast random walk on a coagulative dy- sations of a coagulative dynamic permutation
namic permutation. The blue curve is a plot  of 10* elements and an infinitely fast random
of the deterministic function of the scaled time walk on top. Each simulation run corresponds

to which the total variation distance drops at to a single coloured curve.
a random time and subsequently sticks to.

TVD

scaled time

10000 20000 30000 40000 50000 60000
steps

Figure 3.3: The same as Figure 3.1 for a
coagulative-fragmentative dynamic permuta-

tion coagulative-fragmentative permutation.

Figure 8.4: The same as Figure 3.2 for a
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§3.1.2 Background and earlier work

While over the past years random walks on static random graphs have received a lot of
attention, and the scaling properties of quantities like mixing times, cover times and
metastable crossover times have been identified, much less is known about random
walks on dynamic random graphs. In the static setting, a two-sided cut-off on scale
logn has been established for a general class of undirected sparse graphs with good
expansion properties [21, 26, 103]. Similar results have been obtained for directed
sparse graphs [37, 38] and for graphs with a community structure [20].

In the dynamic setting, predominantly the focus has been on dynamic percolation,
Erdés-Rényi random graphs with edges switching on and off randomly, and configuration
models with random rewiring of edges. Both directed and undirected graphs have
been considered, as well as backtracking and non-backtracking random walks. In
[124, 123, 77] random walks on dynamic percolation clusters on a d-dimensional discrete
torus were considered. Mixing times were identified for several parameter regimes
controlling the rate of the random walk and the rate of the random graph dynamics.
Similar results were obtained for dynamic percolation on the complete graph [138, 133].
Some further advances were achieved in [13], where general bounds on mixing times,
hitting times, cover times and return times were derived for certain classes of dynamic
random graphs under appropriate expansion assumptions. Non-backtracking random
walks on configuration models that with high probability are connected were studied
in a series of papers [9, 10, 11], which culminated in a general framework for studying
mixing times of non-backtracking random walks on dynamic random graphs subject to
mild regularity conditions. Mixing of random walks on directed configuration models
was treated in [42].

Random permutations generated by random transpositions have attracted plenty
of interest as well. An important starting point is [49], where a cut-off in the total
variation distance was established after the application of Fnlogn 4+ O(n) random
transpositions. The sharp constant in front of the leading-order term was achieved
with the help of representation theory for the symmetric group. This paper led to
a flurry of follow-up work, of which we mention [135], where the structure of large
cycles of an evolving random permutation was studied. Similar results were obtained in
[24], including sharp control on the number of observed fragmentations. An important
aspect of both [135] and [24] is the representation of an evolving random permutation,
starting from the identity permutation, in terms of a random graph process that can
be studied by using the theory of random graphs. For the coagulative-fragmentative
dynamics considered in the present chapter, also called transposition dynamics, this
graph process representation yields a graph-growth model that at every step adds an
edge drawn uniformly at random. This graph-growth model is closely related to the
standard “combinatorial” Erdés-Rényi model, whose study is by now a classical topic
in the theory of random graphs (see, for example, [62] or [78]). Yet another important
feature of [135] is the introduction of Schramm’s coupling as a tool to study the cycle
structure of evolving random permutations. In a follow-up article [27], a modified
version of this coupling is used to study the mixing of dynamic permutations endowed
with a more general dynamics, of which the transposition dynamics is a special case.
We also mention [29], which contains a detailed account of Schramm’s coupling. The
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works cited above each highlight one particular facet of the random transposition model,
but close relatives have been studied extensively under different names: mean-field
Téth model [142], the interchange process on the complete graph (see [6, 29, 74] and
references therein), or multi-urn Bernoulli-Laplace diffusion models [128], where our
setting corresponds to a particular choice of the model parameters.

The coagulative dynamics considered in the present chapter can be recast, in the
spirit of [135], as a graph-valued random process that starts with an empty graph on
n vertices and describes a forest that progressively merges into a spanning tree on n
vertices through the addition of edges that do not create a cycle. The study of this
process and its close relatives has a somewhat twisted history. It is similar to the
standard additive coalescent (see [4] for an overview), but it is also interesting in its
own right (see [3, 104]). Finally, there is a wealth of results on minimal spanning trees
and Kruskal’s algorithm, which is another closely related process. In particular, we
mention [88], since this work implies some facts that we list in Section 3.2. We derive
these facts independently, using different techniques in a different setting.

§3.1.3 Setting, definitions and notation

For n € N, let S, denote the set of permutations of [n], i.e., bijections from [n] to itself.
Recall that S, endowed with the operation of permutation composition o forms a group.
Write v, () to denote the cycle of the permutation 7 that contains the element v.

Definition 3.1.1 (Dynamic permutation). A sequence of permutations of [n],
denoted by TI,, = (I1,,(t))!_, with time horizon #™** € Ny U {oc}, is called a dynamic
permutation. |

Example 3.1.2 (Transpositions may fragment cycles or coagulate cycles).

Pick n = 7 and consider the permutation

( ; ; i g 2 (75 I ) with cycle structure (1,2,3,4,5,6,7).
The transposition (1,5) turns this into the permutation

( (1; § Z ;1 g 3 I ) with cycle structure (1,6,7)(2,3,4,5).

Another application of the same transposition acts in reverse. Note that S, is a

non-commutative group for any n > 3. [
We consider two types of dynamic permutations:

Definition 3.1.3 (Coagulative dynamic permutation). I, = (IL,(t)){, is

called a coagulative dynamic permutation (CDP) when II,,(0) = Id (i.e., the identity

permutation) and

I, (t) = a(t — 1) 0 (a,b),  te[n—1], (3.1)
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where, for each t € [n — 1], (a,b) is a random transposition sampled uniformly at
random from the set of all transpositions of [n] that satisfy the constraint

’Ya(Hn(t - 1)) 7é 'Yb(Hn(t - 1)) (32)
The latter guarantees that no cycle of II,, (¢ — 1) is fragmented by the transposition
(a,b). [ |

Definition 3.1.4 (Coagulative-fragmentative dynamic permutation). II,, =
(I1,,(¢))52, is called a coagulative-fragmentative dynamic permutation (CFDP) when
the same holds as in Definition 3.1.3, but without the constraint in (3.2). |

Remark 3.1.5 (Time horizon for dynamic permutations and cycle structure).
Since CDP starts from the identity permutation, it becomes a permutation with a
single cycle after exactly n — 1 steps. Once this happens, there is no permutation
that satisfies (3.2) and the dynamics is trapped. CFDP has no traps and can evolve
forever. The structure of cycles is random and their sizes, scaled by 1/n, converge
in distribution to the Poisson-Dirichlet distribution with parameter 1 (see e.g. [135,
Theorem 1.1] for a precise statement). ¢

Our aim is to study mixing of fast random walks on both CDP and CFDP. To
simplify our analysis, we work with infinite-speed random walks, as defined next:

Definition 3.1.6 (Infinite-speed random walk on II,,). Fix II,, and an element
vo € [n]. Recall that ~,(IL,(¢)) is the cycle of II,(¢) that contains v. Formally,
the infinite-speed random walk (ISRW) starting from vy is a sequence of probability
distributions (u™"°(t))ten, supported on [n], with initial distribution at time ¢ = 0
given by

/"Lnﬂ}o (0) = (/’L”,LLL),UO (O))we[n] Y (3’3)
where p77°(0), the mass at w € [n] at time ¢t = 0, is given by
1
() = 4 Tt W € Yo [In(0)), (3.4)
0, w & Yo, (11, (0)),
and with distribution at a later time ¢ € N given by
Mn,vo (t) = (MZZ,UO (t))we[n] ’ (35)
where 1
w0 (t) = ———— w0 (t —1). 3.6
0= o, 2 D 0

u€vw (In (1))
Informally, the distribution of ISRW spreads infinitely fast over the cycle in the
permutation it resides on. |

In Appendix B.1 we show that the infinite-speed random walk arises as the limit of
a standard random walk whose stepping rate relative to the rate of the permutation
dynamics tends to infinity. Note that the evolution of the ISRW distribution is fully
determined by the initial position of the random walk and the realisation of the dynamic
permutation. See Figure 3.5 for an illustration.
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Remark 3.1.7 (ISRW as a mass-spreading process). The reader may prefer
to let go of the connection with the random walk and view the ISRW purely as a
mass-spreading process. Such a change of perspective would change nothing in our

arguments. ¢
14 o13) oL o(L2)  o(32 o2

1=nvg 2 .3 1 3 .l ’2 .5 1 !2 3 1 !2 !3 .1 2 !3

Y ! v % vo % vo % vo % vg %

pEt ) = o] W@ =|o | @=0|pF@) =L @=|L ]| E) =1

0 1 1 1 1 1

2 2 2 3 3

Figure 3.5: Example of an evolution of an ISRW on top of a CFDP with three elements starting
from the identity permutation. The first row shows the transpositions that generate the next
permutation. The second row is a graphical representation of the cycles of this permutation.
The third row shows the evolution of the ISRW distribution, given that it started from the
element 1.

§3.1.4 Preliminaries for Erdés-Rényi random graphs

The arguments in this chapter frequently make use of results on the structure of
Erdés-Rényi random graphs. This section provides what is needed to state the main
theorems in Section 3.1.6.

Definition 3.1.8 (Standard Erd8s-Rényi multi-graph process). The standard
tmax

Erdés-Rényi multi-graph process on n vertices is the discrete-time process (G(n,t)),"
constructed as follows:

(a) G(n,0) is the graph with n vertices and no edges.

n

(b) At each time ¢ € Ny, pick an edge e; uniformly at random from the (2) possible
edges, and let G(n,t) be the graph obtained by adding e; to G(n,t — 1).
Note that we do not allow for self-loops, but do allow for multiple edges. |

Remark 3.1.9 (Versions and asymptotic equivalence). There are versions of the
Erdés-Rényi multi-graph process that differ in how edges are deployed and whether or
not multiple edges and self-loops are allowed. With respect to monotone properties,
notably the expected size of connected components, the “random growth” G(n,t)
model described in Definition 3.1.8 is asymptotically equivalent to the “combinatorial”
model G(n, M) with M =t edges at times ¢ = O(n), which in turn is asymptotically
equivalent to the “bond percolation” model G(n,p) with p = M(g)_l. For details,
see [62, Sections 1.1, 1.3]. Since we work on time scales of order n, we will use this
asymptotic equivalence without further notice. ¢

Definition 3.1.8 allows for some natural modifications, of which one is important
for the study of CDP:
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Definition 3.1.10 (Cycle-free Erdds-Rényi graph process). The cycle-free Erdds-
Rényi graph process on n vertices is the graph process (G(n, t))ig%" starting from the
empty graph with n vertices, such that at each time ¢ an edge is added that is chosen
uniformly at random from the set of edges that do not create a cycle, a multi-edge or

a self-loop. Thus, G(n,t) is a forest for all 0 <t < tyax. [ |

To understand the typical evolution of CDP, we make use of two couplings: one
between CDP and cycle-free Erdés-Rényi graph processes, the other between cycle-free
Erdos-Rényi graph processes and their standard counterparts. To explain how, we need
to introduce three functions that describe key structural properties of these processes:

Definition 3.1.11 (Functions related to the structure of Erd8s-Rényi random
graphs).

(1) Define ¢: [0,00) — [0,1) as ((u) = 0 for u € [0, 3] and as the unique positive
solution of the equation 1 — ((u) = e~2%“®) for 4 € (3,00). Note that ¢ is non-
decreasing and continuous on [0, 00), and analytic on (4,00).

(2) Define ¢: [0,00) — [0,1) as

B(v) = /0 “dull— @] velo,oo). (3.7)

Note that ¢ is strictly increasing and continuous on [0, 00), and hence has a well-defined
inverse ¢~ !. Furthermore, the function ¢ is properly normalised in the sense that
¢(00) =1 (see Appendix B.2).
(3) Define n: [0,1) — [0,1) as

n(w) = (¢~ (w),  welo1). (3.8)
|

The functions defined in Definition 3.1.11 are illustrated in Figure 3.6 and have the
following interpretation:

(1) ¢(u) describes the expected size of the largest component of the Erdds-Rényi
random graph at time un. For u € [0,00), denote by |€ER (n,un)| the size

max

of the largest connected component in the Erdds-Rényi random graph with n

vertices and un edges, and |6ER (n, un)| the size of the second-largest connected

component. Then, as n — oo,

ER
|Cgmax(n7un)| g C(u)v
n n

ER
‘%CC (n’ un)| E} O. (3'9)

(2) The function ¢ provides the link between the standard and the cycle-free Erdds-
Rényi graph process (see Lemmas 3.2.4-3.2.5 below).

(3) n(u) is the analogue of {(u) for the cycle-free Erd6s-Rényi graph process at time
un, u € [0,1] (see Lemma 3.2.6 below).

Note the change in behaviour of ¢, ¢, ¢~ !, n at % Note that ¢! blows up at 1.
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Figure 3.6: Graphs of the functions introduced in Definition 8.1.11: ¢, ¢, respectively, ¢~ *
(upper curve), n (lower curve).

§3.1.5 Associated graph process

For any dynamic permutation starting from the identity permutation, define the
associated graph process as follows:

Definition 3.1.12 (Graph process associated with II,,). Let I, = (IL,(¢))im
with tmax € NU{oo} be a dynamic permutation starting from the identity permutation.
Construct the associated graph process, denoted by Ar, , as follows:

(a) At time ¢ = 0, start with the empty graph on the vertex set V = [n].

(b) At times t € N, add the edge {a,b}, where a,b are such that II,,(¢) =IL,(t — 1) o
(a,b).
|

Associated graph processes were used in [135, 24] and follow-up articles to represent
the evolution of a general dynamic permutation in terms of a dynamics generated by
applying a single transposition at every time step.

A crucial role will be played by the first time when the support of the random walk
distribution intersects the largest connected component of the associated graph process:

Definition 3.1.13 (Largest component of the associated graph process).
Denote by .« (Am, (t)) the set of vertices in the largest connected component in the

associated graph process at time ¢. If such a connected component is not unique, then
take all the vertices in all the largest connected components. |

Remark 3.1.14 (Possible non-uniqueness of the largest connected com-
ponent). In situations where we employ Definition 3.1.13, the largest connected
component is unique with high probability. Situations where it is not unique will be of
no importance. ¢

Definition 3.1.15 (Drop-down time). Fix any ¢, > 0 such that ¢, = w(n=1/3)
and €, = o(1) as n — co. The drop-down time is defined as

Y, = inf {t > 214 2,]: supp (™" (1)) N Guax (A, (£)) # @}. (3.10)
[ |

Remark 3.1.16 (Drop-down time and hitting time of the largest permutation
cycle). At first sight it might seem unintuitive that the time T#’vo from Definition 3.1.15

69

€ YALIVH))



CHAPTER 3

3. Mixing of fast random walks on dynamic random permutations

plays an important role. Given the diffusive nature of ISRW, an arguably more natural
candidate would be the first time when the ISRW is supported on the largest permutation
cycle. However, the above definition in terms of the associated graph process allows
for a unified presentation of our results in different settings, even when the associated
graph process at a single time does not provide all the information about the structure
of permutation cycles. ¢

For CDP, the drop-down time is the first time when the cycle that contains vg
merges with the largest cycle. For CFDP, however, this is not necessarily true because
cycles fragment. We therefore define the drop-down time to be the first time when the
random walk ‘sees’ the maximal component, see (3.10). Later, we will see that, in fact,
afterwards the mass spreads over Gax(Am, (t)) quickly.

is random. How-
ever, if we condition on a particular realisation of II,,, then T,ll{vo is a deterministic
function of the starting point of the random walk. The role of €, is to ensure that
Té{vo represents the first time in the supercritical regime when the largest component
in the associated Erdds-Rényi graph process coincides with the support of the ISRW,
see Section 3.2.1. The choice of ¢,, ensures that the definition of the drop-down time
avoids the critical window, which corresponds to 3 + O(nQ/ 3), yet covers the entire
supercritical regime. ¢

Remark 3.1.17 (Properties of drop-down time). Clearly, TV

V0

§3.1.6 Main results

For convenience, we introduce the following shorthand notation:

Definition 3.1.18 (Total variation distance away from equilibrium). For
v € [n], define
Dy (t) = dpy (p™°(t), Unif([n])) , t € Np. (3.11)

Our main results are the following two theorems (i> denotes convergence in distribu-
tion):

Theorem 3.1.19 (Mixing profile for ISRW on CDP).
(1) Uniformly in vy € [n],

TV
“nvo 4 o (3.12)
n

where sV is the [0, 1]-valued random variable with distribution (recall (3.8))

P(s* < s) =n(s), s €[0,1]. (3.13)
(2) Uniformly in vy € [n],
(DZO(Sn))se[O,l] 4 (1 —n(s) H{S>S“})se[o 1 in the Skorokhod M -topology.
(3.14)
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Theorem 3.1.20 (Mixing profile for ISRW on CFDP).
(1) Uniformly in vg € [n],

T
“nvo 4l (3.15)

where ut is the non-negative random variable with distribution (recall Defini-
tion 8.1.11(1))
P(u¥ < u) = ¢(u), u € [0, 00). (3.16)

(2) Uniformly in vg € [n],

(D (un))uelo,) 4 (1- C(u)ﬂ{u>u“})ue[o,oo) in the Skorokhod M;-topology.
(3.17)

The proofs of these theorems are given in Sections 3.2 and 3.3, respectively.

§3.1.7 Discussion

1. Despite the similarity of Theorems 3.1.19-3.1.20, the latter is far more delicate. For
CDP, mixing is simply induced by the ISRW entering the ever-growing largest cycle.
For CFDP, the presence of fragmentations breaks the direct link between the dynamic
permutation and its associated graph process: a single connected component may carry
more than one permutation cycle. Specifically, the largest component of the associated
graph process carries a large number of permutation cycles and, at the drop-down time,
the distribution of the ISRW is supported on only one of them. It is not a priori clear
how many steps the dynamics needs to spread out the ISRW distribution over all the
elements that lie on the largest component of the associated graph process. Therefore,
a major hurdle in the proof of Theorem 3.1.20 is to show that such local mizing happens
on time scale o(n). We actually show a stronger statement, namely, that local mixing
occurs on an arbitrarily small but diverging time scale (see Section 3.3.3 for details).
The core of the proof is to show that on the largest component over time there is
a diverging count of appearances of permutation cycles that span almost the entire
largest component of the associated graph process.

2. Theorems 3.1.19-3.1.20 extend our earlier results for the total variation distance of a
(non-backtracking) random walk on a configuration model subject to random rewirings
[11]. There we assumed that all the degrees are at least three, which corresponds to
a supercritical configuration model that with high probability is connected (see [79,
Chapter 4]). Our model with evolving permutation cycles is closely related to the
setting where all the degrees are two, which in turn corresponds to a special kind of
configuration model that with high probability is disconnected (see Figure 3.7). In
this setting, even small perturbations of the degree sequence can lead to significantly
different behaviour (see [57] for details). In Appendix B.5 we comment further on the
connection between permutations and degree-two graphs. More concretely, we show
that in the setting of dynamic degree-two graphs with rewiring, we obtain an ISRW-
mixing profile analogous to the one described in Theorem 3.1.20 (see Theorem B.5.3).
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We stress that in the present work the starting configuration is fixed to be the identity
permutation, which would correspond to a graph with only self-loops, whereas in our
previous work the starting configuration was sampled from the configuration model.

(1,2,3,4,5,6,7) 0 (1,5) = (1,6,7)(2,3,4,5)
1

ot

Figure 8.7: Dynamic permutations are similar to rewirings in the configuration model, where
all degrees are two. Recall Example 3.1.2. Consider the permutation 11(0) = (1,2,3,4,5,6,7),
which consists of a single cycle and corresponds to a degree-two graph that has a single connected
component. Apply the transposition (1,5) to get a new permutation I1(1) = II(0) o (1,5) =
(1,6,7)(2,3,4,5), which consists of two cycles and corresponds to a degree-two graph that
has two connected components, obtained by sampling the edges (1,11(0)(1)) = (1,2) and
(5,1I1(0)(5)) = (5,6) and rewiring them.

3. The mixing profile in Theorems 3.1.19-3.1.20 is unusual: the total variation distance
makes a single jump down from the value 1 to a value on a deterministic curve and
subsequently follows this curve on its way down to 0. This jump, which is similar to a
one-sided cut-off, occurs after a random time. The law of the drop-down time and the
function describing the deterministic curve depend on the choice of dynamics.

4. The pathwise statements in part (2) of Theorems 3.1.19-3.1.20 imply the following
pointwise statements (~ denotes equality in distribution):

Dpo(sn) L. n(s)Y(s), se€]l0,1], with Y'(s) ~ Bernoulli(r(s)),

) ' Y ! (3.18)
Dro(sn) = 1—C((s)Y(s), s€]0,00), withY(s)~ Bernoulli({(s)).

Through the function ¢ plotted in Figure 3.6, we can view the two mixing profiles
as a continuous deformation of one another. Slower mixing for CFDP is intuitive:
fragmentation slows down the mixing, while coagulation induces it.

5. Note the similarities between the mixing profiles described by Theorems 3.1.19—
3.1.20. Both feature a single macroscopic jump at a random time to a deterministic
curve that depends on the choice of the dynamics. We expect this type of behaviour to
occur for any permutation dynamics whose associated graph process exhibits scaling
behaviour similar to that of the Erdés-Rényi graph process. A class of graph processes
that fits this criterion is the class of Achlioptas processes with bounded-size rules (see
[127] or [139]).

6. We can formulate conjectures about finite-speed random walks as well. Settings
where the random walk rate dominates are easy to handle. If the random walk is fast
enough to ensure local mixing (e.g. > n? steps of the random walk occur for every step
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of the random permutation), then our theorems should remain the same with negligible
error terms. In this regime, the mixing is fully driven by the underlying geometry.
However, once these rates are commensurate, we would have to deal with random walk
distributions that are partially mized over cycles, meaning that the distribution of
the random walk would not be uniform over its supporting cycle before this cycle is
affected by the permutation dynamics.

7. Dynamic permutations are a natural model for discrete dynamic random environ-
ments, which typically are disconnected but nonetheless allow for interaction between
their constitutive elements. We believe this setting to be interesting for other stochastic
processes on random graphs as well, such as the voter model or the contact process.

Organisation of the chapter. Section 3.2 starts by establishing a link between
CDP and cycle-free Erdés-Rényi random graphs. A coupling construction is employed
to describe the cyclic structure of a typical CDP. These results are used to prove
Theorem 3.1.19. Section 3.3 deals with CFDP, where the main problem is that the
associated graph process provides weaker control over permutation cycles than for
CDP. After this discrepancy is settled, we employ arguments analogous to those in
Section 3.2 to prove Theorem 3.1.20.

Appendices B.1-B.5 contain supplementary material that is not needed in Sec-
tions 3.2-3.3. Namely, Appendix B.1 shows that the ISRW arises as a fast-speed limit
of the standard random walk. Appendix B.2 proves that the laws of the jump-down
times in Theorems 3.1.19-3.1.20 are properly normalised. Appendix B.3 contains the
key coupling that is used to study the cycle structure of CFDP, which is technical and
of interest in itself. This coupling is needed in Section 3.3. Appendix B.4 contains a
technical computation that is needed in Section 3.3 as well. Finally, Appendix B.5
elucidates the connection between random permutations and graphs with all the degrees
equal to two and extends Theorem 3.1.20 to the setting of dynamic degree-two graphs.

§3.2 Coagulative dynamic permutations

In this section, we establish a link between dynamic permutations and evolving graphs.
To do so, we couple a CDP with a cycle-free Erdés-Rényi graph process (Section 3.2.1),
and couple the latter with the standard Erdds-Rényi graph process (Section 3.2.2)
by making use of well-known results on the structure of connected components of
Erdés-Rényi random graphs (recall Section 3.1.4). We use the couplings to prove
Theorem 3.1.19 (Section 3.2.3).

§3.2.1 Representation via associated graph process

Note that for the dynamics generated by transpositions sampled uniformly at random
from the set of all transpositions of n elements, the associated graph process is equal
in distribution to the Erdés-Rényi process defined in Definition 3.1.8. In the setting of
coagulative dynamic transpositions, this leads us to the following observation:
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Lemma 3.2.1 (Representation of CDP as cycle-free graph process). If 11,
is a CDP, then its associated graph process Am, is the cycle-free Erdds-Rényi graph
process defined in Definition 3.1.10.

Proof. Recall that the change between two successive permutations in a CDP is gener-
ated by applying a single transposition. Furthermore, note that the only transpositions
causing a split of a permutation cycle are the ones that transpose two elements from
the same cycle. Recall Definition 3.1.12, and note that if Ay, (¢) is a forest, then
its connected components correspond to cycles of II,,(t). Furthermore, observe that
cycle-splitting transpositions correspond to edges that join two vertices from the same
connected component. Thus, if Ay, (¢) is a forest, then any transposition causing a
fragmentation of a permutation cycle corresponds to an edge that creates a cycle in
the associated graph process.

Observe that the associated graph process always starts as a forest. Since frag-
mentations of permutation cycles are not allowed, there can be no edges that lead
to graph cycles in the associated graph process. Since the associated graph process
for a dynamic permutation with no constraints is the Erdos-Rényi graph process, the
associated graph process for a CDP is the Erdés-Rényi graph process constrained to
be a forest (see Definition 3.1.10). O

§3.2.2 Connected components of the cycle-free Erdés-Rényi
graph process

e Coupling of Erdés-Rényi graph processes. We construct a coupling of the
standard and the cycle-free Erd6s-Rényi graph process that allows us to study the
structure of the connected components of the cycle-free process.

Definition 3.2.2 (Coupling between cycle-free and standard Erdds-Rényi
graph process). Let G, = (G, (t))ten, be the Erdés-Rényi graph process on [n]
defined in Definition 3.1.8, and denote the edge set of G, (t) by £, (+). Based on G,
construct a graph-valued process F,, = (Fy,(t))ten, as follows:

(a) F,(0) is the empty graph with vertex set [n].
(b) At times t € N, define e*(t) = £q, ) \ £a, (t—1), Which is the edge added at time
t to Gn(t).

(a) Construct the candidate graph at time ¢, defined as F};(t) = (V,Ep, 1—1) U
{ex(®)})-
(b) If Fx(t) is a forest, then set Fy,(t) = F(t).
(¢) Otherwise, set F,(t) = F,,(t — 1).
Define the effective time 7, (t) of the coupled process (F,(t))ten, by setting 7,,(0) =0

and, recursively for ¢ € N,

) Tt — 1)+ 1, if F(t) # Fu(t — 1), i.e., the proposed edge has been accepted, (3.19)
Tn =
Tu(t —1), if F,(t) = F,,(t — 1), i.e., the proposed edge has been rejected.

Note that 7,,(t) is a random variable because it is a function of a random graph process.
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We suppress the dependence of 7,,(t) on Fj,, since we will never work with more than
one set of coupled processes at a time. |

Remark 3.2.3 (Relation between F,, and A, ). By the definition of the coupling,
if there are edge-rejections at times {t,t+1,¢t+2,...,t+k}, then a string of k41 copies
of the same graph is observed in F,,, i.e., F,(t—1) = F,(t) = F,(t+1) = --- = F,(t+k).
On the other hand, the associated graph process Ay, is by construction a sequence of
graphs such that no two graphs are the same. To recover Ay, from F),, from every
string of copies of the same graph choose only one copy of that graph. ¢

The reason why this construction is useful to control the connected components of
the cycle-free Erdos-Rényi graph process is stated in the following lemma:

Lemma 3.2.4 (Connected components of F,,). Let H be a graph with vertex set V),
and define CC(H) to be the partition of V induced by the connected components of H. Let
Gn, F,, be as in Definition 8.2.2. Then, at every time t € No, CC(G,(t)) = CC(F,(t)).

Proof. Note that any edge creating a cycle does not influence the size of the connected
components. O

e Effective time. To use the above observation, we need to control the effective
time 7, (t). The following lemma shows that with high probability and after scaling by
1/n, there is a simple relation between the standard time ¢ and the effective time 7, ():

Lemma 3.2.5 (Effective time of a cycle-free Erd8s-Rényi graph process). Let
G, F, and 1, be as in Definition 3.2.2, and ¢ as in Definition 3.7. Then, for any for
u € [0, 00),

= ¢(u). (3.20)

Proof. The proof of Lemma 3.2.5 consists of two separate lines of argument. First, we

show that the left-hand side in (3.20) concentrates around a deterministic quantity.

Afterwards, the value of this quantity is computed.

PART 1: CONCENTRATION OF THE ASSOCIATED MARTINGALE. Observe that
t
(t) =t — Z Ig(s) t € No, (3.21)
s=0

where g is the edge-rejection indicator at time s. Let F = (F,(f))ten, with
Fu(t) = 0((Gn(q))i=0) be the natural filtration with respect to the Erdés-Rényi graph
process. By the construction of the coupling, a rejection occurs whenever there is an
edge that creates a cycle within a connected component. Therefore

Tz =0, [llR(s) | Frn(s — 1)} ~ Bernoulli(ps), s €N, (3.22)

where the success probabilities are given by

|€](|€] — 1)
= E _ 2
Ps ( ) ) seN, (3.23)
CeCC(Gr(s—1))
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i.e., the number of edges that can join two vertices from the same connected component
at time s — 1 divided by the total number of edges. Introduce the shorthand notation

Ef] =E[- | Fu()], (3.24)

and define two sequences of random variables (D;)ien, and (Si)ten, such that

So =Dy =0,
Dy = gy —Ei1 []IR(t)] ) teN,
t t t (3.25)
Si= Dy=> lp@y—Y Boi[lpe), teN
s=0 s=0 s=0
Note that, for any ¢ € Ny,
]E[St] S t < o0,
E; [Si41] = Ey [HR(t+1) - E, [HR(H»l)” + B [S¢] = S, (3.26)

1St = Sp—1l = [Dy] < 1.

Hence, (St)ten, is a martingale with bounded differences with respect to the natural
filtration of the Erdds-Rényi graph process. Using the Azuma-Hoeffding inequality, we
can estimate

P(|S;| > ¢) < 2exp (_;) . (3.27)

Pick t = un, u € [0,00), and €, = n%, ¢> 0,0 €(0,1). Introduce the event

1446

E(un) = {|Sun| <n 7 }. (3.28)
By (3.27), L.
P (Z¢(un)) < 2exp (22) = o(1) (3.29)

and hence P (Z(un)) =1 — o(1). By the definition of S; in (3.25), we see that, on the
event Z(un),

146

1 un 1 un ) 146
() [n 2 Urey = > Eer [HR@]] =Tz o1),  with [o(1)] < 0%,
s=0 s=0

(3.30)
which establishes the concentration of 7,(un)/n as n — co.
PART 2: COMPUTATION OF LIMIT. We compute
1 - (HE(un) + ﬂEc(un)) -
- Z Irs) = - Z Irs) (3.31)
s=0 s=0
1 un un
== []IE(W) (Z B 1 [1ge)] + 0(n)> + zeuny Y nR(s)] . (3.32)
s=0 s=0
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1. Observe that

un

1 P
Tz (un) > I =0, (3.33)
s=0

because Yo" Nr(s) < un and lze(yn) % 0. To understand the first summand in (3.32),
we need to introduce another event. Fix a sequence e, such that ¢, = o(1) and
£, = w(n~1/3). For any n € N, t € Ny, define the Erdés-Rényi typicality event
Q, (un) = {|Er(n, vn)| € (n[¢(v) — en),n[¢(v) +en)) Vo € [§,u]} (3.34)
n{o< max [Coee(n, )| < ney b

sec

Then we can write

un un
1= (un) Z]Es—1 M) = Mz (o, (wn) + loc wn)) Z]Es—l Mg - (3.35)
s=0 s=0
Again, we see that
1 un
T (un) Zjo Eo1 [Iag)] =0, (3.36)

because " E,_1[1g5)] < un and lge (un) = 0.

2. It remains to compute %Ilg(un)]lﬂn(un) Yoo Es—1[1g(s)], which is the only term
that will be non-zero after we take the limit n — oo in (3.31). Recall that Ey_; [T (4] ~
Bernoulli(ps), where the success probabilities ps were introduced in (3.23).

Since |V| = n, we have the following bounds:

ER
SRR AGEE byl  o<s<in
Ps = =D S lEResP €8 ms) 1
€EeCC(Gn(s—1)) n(n—1) n? + 02 B n N < s <un,
(3.37)

where the last bound is uniform in s < un. The first line, for times below n/2, holds

since BR BR
Z ‘(g|(|<€‘ — 1) < |Cgmax(nv S)| < ‘(gmax(n7n/2)|

nn—1) — n n

. (3.38)
€eCC(Gp(s—1))

The second line separates the contribution of the maximal component and all the other

components, and bound the non-maximal component similarly as in the first line.

In the supercritical regime, we separately describe the contribution of the unique
largest component and give an upper bound only on the probability of rejection
due to the other components. On the Erdés-Rényi typicality event €, (un) (recall
(3.34)), the size of all the components in the subcritical and critical regime and all the
components but the largest one in the supercritical regime can be uniformly bounded
by | €| < Zn?/3, where Z is a positive random variable. From (3.22), (3.34) and (3.37),
it follows that, on the event Q,, (un),

- o < u|EER (n,n/2)| < e,u, 0<u<l

]lﬂn(un) ZEs—l []IR(S)] = 11Qn(un) Zps {_ ufrILlaX . N 2 o %
pors ~ = ZS:%(Q(z/n) +en)? + R(un), u> 3,
(3.39)
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where we use that ((3) = 0. Since |€5% (n,n/2)| < g,n on Q,(un), the remainder

max

term R(un) can be bounded as (recall (3.37))
|eee (n, 5)|

R(un) < un max —=<

< =
onax p < epun = o(n). (3.40)

3. Before wrapping up, let us note that
un 2 u
o) 2 amo Sl8/m)” / dv ¢(v), (3.41)
0

n

because ¢? is bounded and hence Riemann integrable over compact intervals [0, u],
and 23" ((s/n)? is a Riemann sum of (* over a regular partition of [0,u] into
subintervals of length 1/n. This allows us to finish our previous computation, namely,

un

1
-~ 2::0 Tg(s)
1 un un
= [HE(un) (g, (un) + Nae (un)) <Z Eo—1 [Tps)] + 0(”)) + Uzc (un) z HR(S)]
s=0

s=0
(3.42)
1 un J u
-1 (o(n) + Bzl (uy Y Eos [ﬂmsﬂ) 4 [ ave) = u-ow)
s=0 0
(recall (3.7)), from which the desired result follows. O

e Mapping between times. The main purpose of Lemma 3.2.5 is to show that
on time scales of order n there is a function ¢ (recall Definition 3.1.11) capturing the
correspondence, in the limit as n — oo, between the times at which the standard Erdds-
Rényi graph process and its cycle-free counterpart have certain quantities distributed
equally, notably, the sizes of their connected components. Since ¢ is strictly monotone,
it admits a proper inverse, which allows us to relate the cycle-free graph process to the
standard Erdés-Rényi graph growth process.

e Largest component. To conclude the analysis of the cycle-free graph process, we
combine the above results to obtain a characterisation of the largest component of the
cycle-free Erdés-Rényi graph process:

Lemma 3.2.6 (Size of the largest component). For s € [0, 1], let |€SER (n, sn)|
be the size of the largest component of the cycle-free Erdds-Rényi graph process on n
vertices at time sn. Then

(gcfER
(G )| 5

n

n(s) = (67" (s))- (3.43)

Proof. In Lemma 3.2.4 we have established that for every n € N the connected
components of the cycle-free graph G¢(t) correspond exactly to the connected com-
ponents of the standard Erd&s-Rényi graph process at some random time, denoted
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by 7,,71(t). In Lemma 3.2.5 we have established that 7,7 1(t) = n¢~1(¢t/n) + op(n) and
|‘5ER (n,sn)| = n{(s) + op(n). Hence

max

[Goto (n, sn)| £ [ Gk (n,m(67(5) + 0p(1)))] = nC (@7 (s) + 02(1)) + 0p(n), (3.44)

from which the claim follows. O

§3.2.3 Drop-down time and mixing profile

As stated in Theorem 3.1.19, for CDP the mixing profile exhibits a cut-off at a random
time. From that moment onwards, the total variation distance follows a deterministic
curve that is related to the typical structure of CDP. The following lemma gives the
distribution of the drop-down time and settles Theorem 3.1.19(1):

Lemma 3.2.7 (Limit distribution of drop-down time for ISRW on CDP).
Recall TV, from Definition 8.1.15. There exists a [0, 1]-valued random variable sV

n,vo

with a distribution function P(s¥ < s) = n(s), s € [0,1], such that

|}
Do d . (3.45)
n
Proof. By the arguments in the proof of Lemma 3.2.1, the sizes of the connected
components of the cycle-free associated graph process exactly correspond to the sizes
of the permutation cycles of the CDP at a given time t. Therefore we must study
the probability that a uniform vertex lies on the largest component of a cycle-free
Erdés-Rényi graph process.

Let P,, denote the law of CDP on [n] and PSR the law of the associated graph
process, which is a cycle-free Erdés-Rényi graph process (recall Definition 3.1.12 and
Lemma 3.2.1). Fix a sequence ¢, such that &, = o(1) and &, = w(n~'/3), and for
n € N, t > 0 define the typicality event

Q) = {1 Ggae (0, 0)] € n(n(t/n) — en,n(t/n) + en, )} O { |G (0, 8)] < mep b
(3.46)

For s € [0, 3), we have P, (T}, < sn) =0 by the definition of T}},, . For s € [3,1], by
Lemma 3.2.1,
P, (T, < sn) =PSER(vy € €2 (sn))

n,vg — max

= PR ({vg € Goan (sn)} N Q5 (sn)) + PR ({vg € G (sn)} 1 [ (sn)]°).

(3.47)

Since the event QSER (sn) occurs with probability 1—o(1) and PSER ({vg € €SER (sn) 1N
QER (sn)) = n(s) + o(1), we see that, for any s € [0, 1],

Pu(TY,, < sn) "= n(s). (3.48)

Since 7 is continuous, non-negative and non-decreasing on [0, 1] such that fol dun(u) =1,

(3.48) defines a proper distribution function (recall Definition 3.1.11). See Appendix B.2

for a detailed computation. O
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With the above results in hand, we are ready to prove the pointwise version of
Theorem 3.1.19(2), characterising the mixing profile of ISRW on CDP:

Lemma 3.2.8 (Pointwise limit of mixing profile for ISRWs on CDP). Uniformly
in vg € [n],

DY (sn) 5 1—n(s)Y(s), sel0,1), (3.49)
where Y (s) ~ Bernoulli(n(s)).

Proof. Given a permutation , let

[Ymax ()| = max{[y, (7)[: v € [n]} (3.50)

denote the size of the largest cycle of w. For every n € N,
D} (sn) = dry (Unif ([n]), Unif ([rmax (sn)]) ) = 1 - ””nﬂ (3.51)

by Definition 3.1.6 and the definition of total variation distance. Using Lemma 3.2.1,
we see that

v d 1
Do (sn) = 1 = — (|%uo (s7) Nagmn (an) + € (1) jegemn (an)e)

1
=1- H (rfvo (S’I’L)‘]l(z;fER(sn) (]I{Ti{voﬁsn} + ]I{Tif,vo>sn}) + |(gy0(8n)|ﬂ[Q%fER(sn)]c> .

(3.52)

Standard results for the size of Erdés-Rényi connected components (recall (3.9)) imply
that

|Cgvo(sn)|]lﬂffER(sn)]1{T#1UO>sn} P

— 0,
(3.53)

TIige e =0 e 1
[QSIER (sm)] 3 QEfER (sn) ) n

where the last limit follows from the fact that at times 0 < sn < T, # v, the initial vertex
v lies on a non-largest component, and hence the numerator scales as o(n). Similarly,
the size of the largest Erdés-Rényi component has a well-known limit (recall (3.9)), on

the event {T}Y, < sn}, namely,

G, (51)| LR (6r)
[Gun (5| L )%77(3). (3.54)

n
Finally, the only random variable that converges to a non-degenerate random variable
is

1 <sn} < Y (s), Y (s) ~ Bernoulli(n(s)), (3.55)

4
(.,

which follows from Lemma 3.2.7. Note that D2°(sn) is a sum of several random
variables, and we established the convergence of each in (3.52)—(3.55). Hence, the claim
follows via Slutsky’s theorem. O
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To conclude this section, we use Lemma 3.2.8 to prove the pathwise convergence
part of Theorem 3.1.19:

Proof of Theorem 3.1.19(2). Observe that, for every n € N, any realisation of D2 (-)
is a monotone cadlag path on the compact set [0,1]. In this special situation, the
pointwise convergence proven in Lemma 3.2.8 implies pathwise convergence in the
Skorokhod M;-topology. For details, see [151, Corollary 12.5.1]. O

§3.3 Coagulative-fragmentative dynamic permuta-
tions

In Section 3.2, for CDP it took effort to control the structure of the associated graph
process, while the mixing profile was obtained via an easy argument. For CFDP the
opposite is true: the associated graph process, introduced in Section 3.2.1, is the
Erdés-Rényi graph process defined in Definition 3.1.8 (which is one of the key facts
used in [135]), while the link between the cycles of the underlying permutation and the
connected components of the associated graph process is far less clear. Indeed, each
non-tree connected component of the associated graph process may represent multiple
permutation cycles, which brings a substructure into the problem that needs to be
controlled. Moreover, it is not a priori clear whether or not this substructure influences
the mixing profile, since immediately after the drop-down time the distribution of the
ISRW is uniform over a component that spans only a random fraction of the largest
component of the associated graph process.

The key result in this section is that ISRW on CFDP exhibits fast local mizing on
the largest component of the associated graph process upon drop-down. After scaling,
this leads to results that are qualitatively similar to those obtained for CDP, namely,
the occurrence of a single jump in the total variation distance, from 1 to a deterministic
value on a curve related to the largest component of the associated graph process, at a
random time whose distribution is again connected to the largest component of the
associated graph process. The scaled time now takes values in [0, c0) instead of [0, 1].

In Section 3.3.1 we identify the drop-down time and prove Theorem 3.1.20(1). In
Section 3.3.2 we show that the support of ISRW lies on a single permutation cycle before
the drop-down time. In Section 3.3.3 we prove fast local mixing after the drop-down
time. In Section 3.3.4 we identify the mixing profile and prove Theorem 3.1.20(2).

Remark 3.3.1 (Permutation elements and graph vertices representing them).
Throughout this section we will (with a slight abuse of notation) identify the vertices
in the associated graph process with the permutation elements they represent. ¢

§3.3.1 Drop-down time

Recall that the central object for the identification of the limit distribution of the drop-
down time for CDP in Section 3.2.3 was the function 7 (recall Definition 3.1.11), which
describes the size of the largest component in the cycle-free Erd6s-Rényi graph process.
In the setting of CFDP, we formulate a result for T, ,lf v, analogous to Lemma 3.2.7, with
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the role of i taken over by (, which describes the size of the largest component in the
standard Erd6s-Rényi graph process:

Lemma 3.3.2 (Limiting distribution of drop-down time for ISRW on CFDP).
Recall T,ll{vo from Definition 3.1.15. There exists a [0, 00)-valued random variable u*
with distribution function P(u% < u) = ((u), u € [0,00), such that

TV
o 4ol (3.56)

n
Proof. The proof is the same as that of Lemma 3.2.7, but uses the laws of CFDP and
its associated graph processes, and uses ¢ in place of 7. O

§3.3.2 Drop-down in a single permutation cycle

In principle, it could happen that the ISRW support has experienced fragmentation
before the drop-down time, which would significantly complicate our analysis. The
main point of this section is to show that, with high probability, this does not occur.

Lemma 3.3.3 (ISRW support lies on a single permutation cycle before Tj}vo).
Fiz e, > 0 such that ¢, = w(n=/3) and ¢, = o(1) as n — co. Let QS (t) denote the
event that the support of the ISRW at time t lies on a single permutation cycle. Then,

uniformly in vy and t = cn with ¢ € (3,00),
P(QEO() | T, >t) =1—o(1). (3.57)

Proof. Recall the associated graph process introduced in Definition 3.1.12, and the
fact that the associated graph process of CFDP is equal in distribution to the standard
Erdés-Rényi graph process. As explained in the proof of Lemma 3.2.1, tree components
in the associated graph process correspond to permutation cycles that have never
experienced fragmentation The idea of the proof is to show that, conditionally on
the event {T}V, > t}, the event Q°°(t) that ISRW at time ¢ is supported on a single
tree-component in the associated graph process occurs with high probability. Observe
that Qee(t) C QGO (¢ ) First we condition on the event {T}¥, > t}. Afterwards, we
extend to the event {T}¥, > t}.

Recall that in Lemma 3.3.2 we identified the limiting distribution of T#,uo /m. Since

P (Qtree( ) | nvo ) =1- ([Qtree(tﬂ | n ,V0 )
P ([Qe(t)]" N {T}., > 1)) (3.58)

)

P(T3Y 0, > t)

and the denominator is bounded away from 0 (recall Lemma 3.3.2), it suffices to show
that P([Qee(t)]° N {T;¥,, > t}) = o(1). By the law of total probability, we can take
the sum over all possible realisations of the underlying dynamics to obtain

P ([0 (1)) N {TY,, > t}) =E [P ([27®)] N {TY,, >t} | (t)isy )| - (3.59)

By [87, Theorem 5.10], with high probability the connected components of the associated
graph process at time t consist of the unique largest component, unicyclic connected
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components and trees. By Definition 3.1.15, conditionally on {T}¥, > t}, the support
of the ISRW in the associated graph process does not lie on the largest component. It
therefore lies, with high probability, on either a unicyclic component or a tree. Denote
by NU"¢(t) the number of vertices in an Erdds-Rényi graph process that are in unicyclic
connected components at time ¢, and recall from (3.9) that €EE (n,t) denotes the size

of the largest component of an Erdds-Rényi graph on n vertices with ¢ edges. It follows
that

E [P <[the<t)]c N{TY,, >t} ‘ (Hn(t))izo)}

=E [P ([27()]° 0 {t0 & G An, ()} | (a®)'sy) | +01) (300

NUC (t)
<E|min| —————,1 1).
<& o (gt + o0
From [87, Theorem 5.11] it follows that NU¢(t) = Op(n*/?) uniformly in t = cn
with ¢ € (3,00). Since the size of the largest component is ((£)n + op(n) (recall
Definition 3.1.11) and the number of vertices is n, it follows that the number of vertices
outside the largest component at time ¢ is (1—¢(+))n+op(n) = Op(n), again uniformly

t
n
in ¢t = cn with ¢ € (3,00). This gives

E [min (% 1)} = o(1). (3.61)

max

Putting the above estimates together, we get
P(QEOt) | Tk, > 1) =1—o(1). (3.62)

It remains to show that this estimate holds not only conditionally on {Tfl{v , >t
but also conditionally on {T}}, > t}. Given that the ISRW support lies on a single cycle
before time T#’UO, at time Té{vo this cycle merges with exactly one other cycle whose
elements are represented by the vertices in the largest component of the associated
graph process, and so the ISRW remains supported on a single permutation cycle. It
therefore follows that

P(QEO(t) | TY,, >t) =1—o(1). (3.63)

n,vg =

O

§3.3.3 Local mixing upon drop-down

The main difference with the setting in Section 3.2 is that each non-tree connected
component of the associated graph process of CEFDP may represent multiple permutation
cycles. We show that, after scaling of time, this fine structure is not felt because the
distribution of the ISRW rapidly becomes uniform over the elements of the permutation
represented by the vertices of the relevant connected component of the associated graph
process. A consequence of this fast mizing is the occurrence of the same phenomenon
as observed for CDP, namely, at time T ,lfmo there is a single drop in the total variation
distance.
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e Local mixing. To formalise the arguments, we first introduce the notion of local
mixing on the largest component of the associated graph process:

Definition 3.3.4 (Local mixing time). Consider an ISRW with distribution p™v
started from the element vy and running on top of CFDP II,, (recall Definition 3.1.4),
and let Ay, be the associated graph process. For ¢ € (0, 1), define the stopping time

TEe =min {t > T¥, : dry (W (t), Unif (Cpax(Am, (1)) < €} (3.64)

n,vo

nasc(Ar, (). In the following
statements we illustrate and quantify the influence of large-enough permutation cycles
on ISRW-mixing. Below we play with three parameters n,e,0 and take limits in
the order n — o0, € L 0 and § | 0. We also play with a time scale a,, satisfying
lim, o an, = o0 and a, = o(n). Along the way we need some facts established
in Appendices B.3 and B.4 that require more stringent conditions on a,, namely,
an = o(n'/?%), respectively, a, = o(n'/?). We summarise this by saying that a,, grows
slowly enough.

We will often use the following Erdés-Rényi typicality event, which occurs with
high probability:

At time T,ﬁ%)s, the ISRW is well mixed on the giant %,

Definition 3.3.5 (Erd&és-Rényi typicality event). Take ¢, such that €, = o(1)
and &, = w(n~'/3). Define the following event

Q1) = {[€nax (1) = n(C(5) = &n, C(7) +nn )} NG (0, )] S men} . (3.65)

max

Note that this event is different from the event €2, (un) defined in (3.34). |

Definition 3.3.6 (Events M(e, ), M2(e)). Denote by 36§”>(t) the normalised size

of the largest cycle at time ¢ (see (B.14)). Recall the event Q¢ (¢) from Lemma 3.3.3,

the Erdés-Rényi typicality event Q%™ (¢) from Definition 3.3.5 (which both occur with

high probability for any t = cn with ¢ € (%,oo)), and introduce the abbreviation
= |G oo (A11, (T, )| Define the events

n,vo

Mﬂeé :{lsupp (o (T >>|>sM}m<SC>< mmm“m )

n,v0 n,vo

3.66)
(m) (4 (
Ma(e) = {3tp € (T}, T, + an): X7 e}

Lemma 3.3.7 (Mixing induced by a single large cycle). Recall Definition 3.3.6.
Let (an)nen be such that lim, o an, = 0o slowly enough. Then

{TEe € (T ) Tk oo + an)} 2 Mi(e,6) N Ms(e). (3.67)

n,vo n,vo? - n,vo

Furthermore, on the event My(e,8) N Ma(e) N QE(TY, ), there exists a tL €
(T 7Y, +a,) such that

mn,vg? N,V

1 1
1= [ max(Am, (t2))] — € < D2 (tr) <1 = [ Grax(An, ()] + & (3.68)
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Proof. Recall that the event Q59 (T}, ) C M (e, d) implies that all the mass of the
ISRW-distribution enters the giant component on a single cycle. Therefore the event
M, (g, ) implies that

1

Vu € supp(u™ (T¥ )t ™ (T,livo) < SR (3.69)

where we recall that M = %, (Am, (T} ,,))|- The event M;(g,8) N My(e) indicates

that a cycle of size at least (1 —&2)|%.,,,.(Am, (Té{vo))| has appeared by time Té{vo +ay,.
We denote this large permutation cycle by 365") (tz). This cycle necessarily contains
some mass of the ISRW-distribution because, due to the event Mj(e,d), the mass
was initially spread out over a cycle that is larger than the region not covered by
355") (tr). We compute the effect of the event M (g,d) N Ma(e) on the decay of the
total variation distance. The worst possible scenario is when the €2M elements not
covered by :{gn) (tr) each carry mass 1/(eM). Note that the definition of ISRW requires
that the remaining mass is spread out uniformly over xﬁ”)(t L)- A simple calculation
(see Appendix B.4) shows that, at time ¢7, (introduced in the definition of the event
M (e)) and for n large enough,

drv (,ﬂ (tr.), Unif (%, (An. (tL)))) <e, (3.70)

and (3.67) follows.
To prove (3.68) we use that, for probability mass functions p = (pz)zex and

q = (qz)zex,
dov(p,a) = Y [pe — (02 A a) ). (3.71)

zeX
e For the upper bound in (3.68), we use the triangle inequality to estimate

dry (u™*(t1), Unif([n]))
< dpy ("0 (tr), Unif(%pax (An, (812)))) + dov (Unif (%0, (An, (£12))), Unif ([1])).

(3.72)
Note that, by (3.71),
dry (Unif (6, (Am, (1)), Unif ([n])) = 1 — %‘%max(AHn L))l (3.73)
while, by (3.70),
dry (0™ (tr), Unif (s (Am, (tL)))) < e. (3.74)

Combing (3.73)—(3.74) with (3.72), we get the upper bound in (3.68).
e For the lower bound in (3.68), we note that

dry (p™*(t), Unif([n]))

> dry (1™ (tL), Unif(€ax (An,, (t2)))) — drv (Unif (€0, (An,, (1)), Unif([n])).
(3.75)
Combining (3.73)—(3.74) with (3.75), we get the lower bound in (3.68). O
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Before proceeding we make the following observation. Since %T}LL’UO At by
Lemma 3.3.2, and P(u? < 1 +6) =26(1 + o(1)) for 6 > 0 small enough, we note that
P(LT},, <3+ 6) can be made arbitrarily small by picking § > 0 small. Furthermore,
for 6 > 0 small enough, €., (A, ((3 +6)n)) > dn with high probability, which follows
from the properties of the Erdés-Rényi giant, specifically from the fact that ¢’ (%) =2
Thus, (3.69) implies that, on the event

[T > G+ 0, (G (An, (3 + 6)0))] 2 o0}, (3.76)
we have
Ve € supp(u (T, )): i (TY,,) < —
n,vo u n,vg/) — E(S’I’L7 (377)
YU & G (An, (T00)) s 1™ (L) = 0,
where the last equality holds on the event Qt(T, j{vo).
Note that for times ¢t > T}LL,UO? just as for CDP,
P () =0 Y & Cox(An, (1) VE2T), (3.78)

since, by the construction of the associated graph process, the support of u*° (Tfl{vo)
always lies on a single connected component of the associated graph process. The

uniform bounds above will prove to be essential below.

Lemma 3.3.7 allows us to quantify the probability of e-mixing after a single appear-
ance of a cycle of size (1 — %) M:

Proposition 3.3.8. Fiz § > 0. Let (ap)nen be such that lim,_ . a, = oo slowly
enough. Then there exists a function € — f(€) satisfying lime o f() = 0 such that
]P,(TLM,E (T4 TY .+ an), T, > (4 —|—6)n) < fe)+o(l), m—oo. (3.79)

n,vo n,vg? N,V ? T Nn,vo

Consequently, on the event that TY, > (1 + 6)n, the conclusion of (3.68) fails with
probability at most f(e).

Proof. We will derive an upper bound for the probability of the event (M;(g,d)° U
Ma(e)) N{TY,, > (3 + 6)n}, which by (3.67) includes the event in the left-hand side
of (3.79). To do so, we will work with a further sub-event.

Denote the number of vertices in %, (A, (t)) that are in cycles of size smaller

than en by S(en,t). We use [29, Lemma 2.4], which states that for any ¢ > cn with
¢ > 7 there exists a C' > 0 such that, for any ¢ € (0,1) and n large enough,

E[S(en, t)] < Celog(L)n. (3.80)
Define the event
Ms(e,t) = {S(en,t) < Ven}. (3.81)

Recall that the mass at Tnu,v0 enters the largest component of the associated graph
process on a cycle that belongs to a uniform element. Trivially,
(Ma(e,8)° UMa(e)) N{T}Y,y, = (5 +6)n}

C (Ma(e,0)° U Ma(e)) N My (e, T, ) 1T, = (5 +0)n}) UMs(e, T, )

(3.82)
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We estimate the probability of these events one by one. First, use the Markov inequality
and (3.80) to estimate, for n large enough,

P (Ms(e, Y, )¢) < Cy/elog(L). (3.83)
Second, estimate
P (My(e,8)° N Ms(e, Tt ,,)) <P (Mi(e,0)° | Ms(e, Tt ) < Ve, (3.84)

with the last inequality following from the definition of M;(e,d). Third, the key
estimate stated in Proposition B.3.10, whose proof turns out to be rather delicate,
yields that, for 6 > 0 fixed,

P (Ma(e), T, = (3 +6)n) = o(1). (3.85)

’ T n,vo

Indeed, the key event that is estimated in Proposition B.3.10 is
Enle,e, k) = {3 ()i, € (enyentan): XV (ty—1) < 1—¢, XV (t) > 1—¢ }, (3.86)

which states that there are at least x € N times in the interval (cn,cn + a,) such
that the size of the maximal cycle crosses (1 — ¢) upwards, i.e., }f(ln) (tg) > 1 —e.
Proposition B.3.10 states that &,(c,e,x) occurs with high probability for all ¢ €
(1/2,00), k € N and ¢ > 0. We apply Corollary B.3.12, which is a consequence of
Proposition B.3.10, to obtain (3.85).

Combining (3.82)—(3.85), we find that there exists a C' > 0 such that

P((Ml(a,é)c UMas(e))N {Té{vo > (% + 5)n})
<P (Ms(e T )°) + P (Mi(g,8)° N Ms(e T )) +P (Mg(E)C,T#ﬂ)O > (3 +0)n)

T n,vg ? T n,vo
< Cyelog(d) +ve+o(1) < gl/3
(3.87)
for € small enough, which in turn decays to 0 as € — 0. O

e Adaptation of Lemma 3.3.7 and Proposition 3.3.8. Finally, we adapt
Lemma 3.3.7 and Proposition 3.3.8. Note that Lemma 3.3.7 is true at time t = cn
when we replace the events M, (g, d), Ma(g) by (compare with (3.66))

M (en,e,0) = {|supp(u™"(cn))| > en} NQE(TY, ),

/ (n) 2 (3.88)
Mi(en,e,6) = {HtL € (enyen+ap): X7 (tp) > 1 — %}

Here, we recall the event Q9 (¢) from Lemma 3.3.3 (which occurs with high probability
for any t = cn with ¢ € (3,00)), and the extra factor 1/4 is added to accommodate the
extra factor 1/6 in the first line of (3.77). It remains to redo the calculations in the
proofs of Lemma 3.3.7 and Proposition 3.3.8 with these modified events. Take t = cn
with ¢ € (3, 00), and define

TLME (1) = min {s>t: dpry (™" (s), Unif(€nax (1)) <e}. (3.89)

n,vo

We start by adapting Lemma 3.3.7:
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Lemma 3.3.9 (Mixing induced by a single large cycle). Let (a,)nen be such
that lim, o a, = 0o slowly enough, and let ¢ € (1/2,00). Then, for any 6 € (0,c— %),

{Tf’%’g(cn) € (en,en + an)} N {(% +d)n < Tfl{vo <en} (3.90)
D Mi(cn,e,8) N Mhy(en,e,0) N {(3 +8)n < Ty, < cn—an}.

Furthermore, on the event M (g,8)NMa(e)N{(:+0)n < TY,, < cen—a, }NQE(TY, )
there exists a tr, € (cn,cn + ay) such that

1
1—--— ‘Cgmax
n

(Am, (t))] —e < Dpo(tr) <1 - %\‘fmax(flnn (L)l +e. (3.91)

Proof. The main ingredient in the proof of Lemma 3.3.7 was (3.69). Recall the
extension of (3.69) in (3.77). With (3.77) in hand, we can simply follow the proof of
Lemma 3.3.7. O

We continue by adapting Proposition 3.3.8:

Proposition 3.3.10. Let (ap)nen be such that lim,_, a, = co slowly enough, and
let ¢ > % Then, for any 6 € (0,¢ — %), with € — f(e) as in Proposition 3.3.8,

P<T7ﬁﬁg*€(cn) & (cn,cn + ay), (% +0)n < T#M <cn— an> < f(e)4+o(1), n — oco.
(3.92)

Consequently, on the event that (% +o)n < T

wwy < € — ap, the conclusion of (3.91)
fails with probability at most f(e).

Proof. We follow the proof of Proposition 3.3.8, which relies on the inclusion in Lemma
3.3.7. Instead, we now rely on the inclusion in Lemma 3.3.9. Recall from the proof of
Lemma 3.3.7 that S(en,t) denotes the number of vertices in 4, ., (Am, (¢)) that are in

max

cycles of size smaller than en, and that, by (3.80), E[S(en,t)] < Celog(L)n.
Recall TEM:¢ from (3.64). Define the event

n,vo

Mi(e) = {TEMe c(T¥ TV +a,)}. (3.93)

n,v0 m,v0? 7 N,Vo

Trivially,
(M’l(cn,s,é)c U Mi(en, e, 5)C) N {(% +d)n < Tfl{vo <ecn— an}
- (Mg(s) N (M'l(cn,e, §)¢ U Mb(cn, e, 5)C> N {(% +on<T), <cn-— an})

U (My(e)° {5+ < TY,, <en—an}).
(3.94)
We estimate the probability of these events one by one. First, for n large enough,

P(My(e), (5 +On < Th,, <en—ay) SP(M(E), (G +0)n < TY,,)  (395)
< fle) +o(1),

where the last inequality follows from Proposition 3.3.8.
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Second, if TEM< e (T, . TY,, + an) and T¥ > (3 + 6)n, then

n,v0? N,V n,vg —
]P’(./\/l'l(cn,é, §)° | Mi(e), (3 +0)n < T#,UO <cn— an) =0. (3.96)

Indeed, M (cn,e,d)¢ and Té{vo < ¢n — a, imply that | supp(p™ve (T,i{v0 +ap))| < en.

By an application of (3.71) with X = [n], p = Unif([n]) (for which p, = % for all
v € [n]) and g, = p™* (T}, + ay), this implies that

DY (T, +an) > 1—. (3.97)

However, the latter is incompatible with (3.68) when T.Y > (3 + 6)n, since

n,vo

, 1
ID'ZO (TU + an) < DZO (tL) <1- El(gmax(AHn (tL))| +e

1
<1 = G (An, (3 + )|+ ¢ (3.98)
<1-204+o0(l)+e<1—¢,

where the second inequality uses the definition of the event Mj(e), and the last
inequality is valid for € small enough depending on §. Third, apply the key estimate
stated in Proposition B.3.10 (see the explanation below (3.86)), to get

]P’(Mé(cn,e, §), (34 0)n < Té{vo <ecn— an) =o(1). (3.99)
Combining (3.90), (3.94)—(3.96) and (3.99), we obtain
P(Trﬁ%s(cn) & (cn,en + ay), (% +6)n < T,ll{vo <ecn— an)

< P((M'l(cn,a, 5 UMb(en,e,0))N{(3+0)n < TY, <en— an})

< P(Mg(e)c, (3+6)n< Tﬁtvo <cn— an)

(3.100)
+P(Mi(en,e,0)° N My(e), (3 + O < T, < en —an)
+ P(M’z(cms,é)c, G+on<TY, <cn— an)
< f(e) +o(1) +0+0(1) = f(e) +o(1),
where the first inequality uses the inclusion in Lemma 3.3.9. O

§3.3.4 Mixing profile

Like in the case of CDP, the results on the mixing profile are established in two steps.
First we establish pointwise convergence, afterwards we extend to process convergence.

The following lemma settles Theorem 3.1.20(2):

Lemma 3.3.11 (Pointwise convergence of the mixing profile for ISRW on
CFDP). Uniformly in vo € [n],

DY (sn) 51— C(s)W(s), s €0,00), (3.101)
where W (s) ~ Bernoulli(¢(s)).
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Proof. Fix s € [0,00) and split the random variable DX (sn) — 1 as
D (sn) — 1 = [D¥(sn) — 1] (11 (b samy F gy Ssn}) (3.102)
X (ﬂ(zilER’(sn) + ﬂ[ﬂglER)(sn)]c) (IlQ“ee(sn) + ﬂ[gztree(sn)]c) s

where the event Q2%°¢(sn) is defined in the proof of Lemma 3.3.3, and we recall the
Erdés-Rényi typicality event (see (3.65))

Q1) = {|Gmax (. ) = n(C(5) = €n, C(5) +en,) } N {I€ (0, 8)] < men ). (3.103)

Because QF® (sn) and Q2%¢(sn) both occur with high probability, the terms containing

the indicators ljger(gp)e and Ljguee)e converge to 0 in probability, and hence

'D,ZO (Sn) —1= ['DZO (sn) — 1] (Il{T#,v0>sn} + ]I{Ti} sn}) HQ;ER)(STL) ﬂQtree(Sn) + 0]p>(1).
(3.104)

vg_

To deal with the first term in (3.104), we note that

[Dy(sn) — 1]]1{T#,uo>sn}]lﬂglER)(sn) Dgurce (sn) (3.105)

d Op(n2/3) P
= [(1 — T -1 ﬂ{ T U0>sn}ﬂSl$FR)(sn) ]IQtree(sn) — 0,

since, on the above events, the distribution of ISRW is uniform over a single permutation
cycle outside of the largest component of the associated graph process, whose size is
O]p(n2/3).

To deal with the second term in (3.104), which only contributes when s > %, we
use Lemma 3.3.2. For § > 0 sufficiently small and a,, as in Proposition 3.3.10, we split

]I{T#,vo <sn} = ]1{(%+5)n§T#,1,0§5n7an} + ]l{snfan<T#)UO§sn} { Ty vy < }
(3.106)
We rely on (3.91) in Lemma 3.3.9, which holds with high probability due to Proposition
3.3.10. (It is here that we need T}, > (1 + 0)n, since this appears as an assumption
in Proposition 3.3.10.) We claim that
D | 1A, ()] — ()] = 02(1). (3.107)
teN ' T
Indeed, (3.107) holds because +|%,.. (Am, (sn))| —5 ¢(s) for all s > 0 fixed, s — ((s)
is non-decreasing and continuous, and s — = | G ax (A, (sn))| is non-decreasing. By
(3.91) and (3.107), we obtain, for all s > % + & and on the event {TE00<(cn) €

(sn,sn+an), (5 +06)n <TY¥, <sn—ay}, that there exists a t1, € (sn, sn + ay,) such
that

1= () —e—0.(1) < D2(tr) <1—((E) + &+ 0x(1). (3.108)
Since € > 0 is arbitrary, we conclude that, on the event {TnL% €(sn) € (sn,sn+ay,), (% +

§)n < T}, < sn—an}, there exists a t, € (sn, sn + ay,) such that

DY (tr) = 1 (%) +0.(1). (3.100)

90



§3.3. Coagulative-fragmentative dynamic permutations

Since the above is true for all s > % + 4, and ¢ — D2(¢) is non-increasing, while
s — 1 —((s) is non-increasing and continuous, (3.109) implies that, for all ¢ > % +0

and on the event {( + &)n < Y, < sn—an},
Dyo(sn) =1—((s) + o0x(1). (3.110)

Since HQ(ER)(Sn)ﬂQtree(sn) —4 1, it follows that

[1 — ’DZU (Sn)]]l{(%ths)nST#,uo <sn—an} ]IQ;ER)(S'”) ]IQtrcc(sn) — C(S)]l{%Jr&S%T#,UOsz%}
= 0p(1).
(3.111)
By Lemma 3.3.2 and Slutsky’s theorem, we thus conclude that
v d
[1 — ,Dno(sn)]ﬂ{Tf,iuoSsnfan}ﬂszglER)(sn)]lQ"ee(S") — C(S)ﬂ{%+6§uugs}' (3.112)
Finally, by Lemma 3.3.2,

P(sn—a, <TY,, <sn)+PETY, <i+6)—=((3+9), (3.113)

which tends to 0 as § | 0. The claim in (3.101) follows by combining (3.104)—(3.106)
and (3.112)~(3.113). O

Finally, an argument based on monotonicity and a growing sequence of compact
intervals settles Theorem 3.1.20 and concludes this section.

Proof of Theorem 3.1.20(2). Observe that for every n € N, any realisation of Dy (-)
is a monotone cadlag path on the set [0,00). The pointwise convergence proven
in Lemma 3.3.11 implies, by [151, Corollary 12.5.1.], pathwise convergence in the
Skorokhod Mj-topology on any compact set [0,¢] such that ¢ > 0 is with probability 1
a continuity point of the limiting process. But the latter is true for any ¢ > 0 because
the limiting process has almost surely one point of discontinuity, whose position is

distributed randomly according to the non-atomic distribution identified in Lemma 3.3.2.

Taking a sequence (tx)ren of such continuity points with ¢, — oo as k — oo, we also
obtain pathwise convergence in the Skorokhod Mj-topology on the non-compact set
[0,00). For details, see [151, p. 414]. O
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Appendices of Chapter 3

§B.1 Infinite-speed random walk as limit of finite-
speed random walk

It is natural to ask what the relation is between an infinite-speed random walk (ISRW)
and a finite-speed standard random walk.

Definition B.1.1 (Finite-speed random walk on II,). Let II,, be a dynamic
permutation. Fix an element vg. Recall that «,,(0) is the cycle of II,,(0) that contains vg.
Pick p € N as the speed ratio between the evolution of the random walk and the random
graph. More formally, let II,, satisfy the condition that

VneNyVi €{0,...,p—1}: IL,(pn) = IL,(pn + i). (B.1)

Denote by II,,(t)[¢] the image of the element ¢ under the permutation I, (¢). The finite-
speed random walk is the random process (Y,;7°(t))ten, on [n] that has Y;*°(0) = v
and, for any time ¢ > 0,

P(Y,(t) =i| Y2 (¢ = 1) = j)

1, if II,,(¢)[¢]] = j and II,,(¢)[j] = ¢ (which is the case for 1- and 2-cycles),
1, ifeither IT,, ()[i] # j and IL,(¢)[j] = i or I,(t)[i] = j and IL,(¢)[j] # 4,
0

, otherwise.

(B.2)
i.e., a simple symmetric random walk on the elements of any given cycle, where the
underlying permutation changes once every p steps. |

With this definition in hand, we can explain what we mean by saying that ISRW
has infinite speed:

Proposition B.1.2 (ISRW arises as limit). Let II,, be a dynamic permutation.
Recall (™" (t))ten, defined in Definition 3.1.6, and let Y,'° = {Y,?°(t) }ren, be a finite-
speed random walk with speed ratio p on the dynamic permutation 11 , with distribution
15" (t) at time t. Note that vy € [n] is the starting element for both the ISRW and the
finite-speed random walk. Finally, suppose that the following relation holds between II,,
and TIY :

VneNgVi €{0,...,p—1}: ,(n+i) =TI} (n). (B.3)
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Then, with high probability, for any i € N,
drv (w0 (0), 1 (pi) ) 570, (B.4)

Proof. 1t is well-known that a simple random walk on a circle of size m mixes in
O(m?) steps. Pick erw > 0, and pick p(erw) larger than the &gy -mixing time

of a simple random walk on a circle of size n. Denote by Y,”°(p(egw )i )|cY ) the

restriction of Y, (p(erw)i) to the cycle C);(v) € IIY (pi), and let cUnlf(S) be the
uniform distribution multiplied component-wise by the constant c¢. Then

drv (Y °(p(erw)i) G )UNif([|C¢(U))]> < eRrw. (B.5)

|CY(U) Zuec () M T
Since, by definition,

Yo 1 ni
D) = 5oy UG I (8B.6)

the claim follows. O

§B.2 Normalisation of the jump-time distribution

In this appendix we return to Definition 3.1.11 and show that lim,_, . ¢(s) =1, i.e.,
the laws of the jump-down times in Theorems 3.1.19-3.1.20 are normalised. The proof
amounts to showing that

/ ds[1—¢%(s)] = 2, (B.7)
where ((u) is the unique solution of the equation
e 2500 =1 —¢(s), s€[3,00). (B.8)
To evaluate (B.7), introduce a new variable v = {(s) and write
/1 ds[1—¢ /du (1 —u?). (B.9)
2

To compute the Jacobian 9, we take the logarithm of (B.8) and differentiate:

1 ds 1 log(1 — u)
- log (] — = _ . B.10
s 2u og (1 —u), du  2u(l —u) T o ( )

This gives
1 1 k
ds 9 1 1—uzu

kEN
1 1
:f/ du
2 /o

1

/ dchlul

2 0 1€N,
(B.11)

(1+u) — (1 —u? Zl—|—2
leN,
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with the coefficients ¢; given by
¢ = 01 + 011 — I 2]1{l>0} + - ] ]l{l>2}7 l € Np. (Bl?)

The sum has radius of convergence 1, and so term by term integration gives

11,2 1
/duzqu 2|2 T3~ 2+Zl+1< l+2>

1eNp >2
111 1 1 1111
i

=-+=+= -
176 24 I+ A+ D(+2)

“1Ts Ty
(B.13)

as required.

§B.3 Cycle structure of coagulative-fragmentative
dynamic permutations and Schramm’s coupling

In [135], Schramm introduced a remarkable coupling to study the cycle structure of
CFDP. The coupling is realised between the part of the dynamic permutation that is
supported on elements that lie in the largest component of the associated graph process
and an independent PoiDir(1)-sample, both seen as partitions of the unit interval [0, 1]
evolving via coagulative-fragmentative dynamics. The main idea of the coupling is to
evolve both partitions according to the same dynamics, but to rearrange and match
components of the partition that become close in size. A detailed account of Schramm’s
coupling is given in [29, Section 5], to which we refer the reader. Below we provide a
short overview of the main features.

Appendix B.3.1 provides a short summary of Schramm’s coupling and collects a
number of estimates that are needed later on. Appendix B.3.2 proves a key proposition
(Proposition B.3.10 below) stating that large cycles recur arbitrarily often in any time
interval of diverging length.

§B.3.1 Short summary of Schramm’s coupling

Schramm’s coupling is defined for a pair Y (t), Z(t) of evolving partitions of the unit
interval [0,1] into countable many subintervals. The dynamics of the evolution is
chosen such that the Poisson-Dirichlet distribution PoiDir(1) is invariant under the
dynamics (see e.g. [143]). As we will see below, such a dynamics corresponds to the
coagulative-fragmentative dynamics considered in Chapter 3.

Definition B.3.1 (Abstract version of Schramm’s coupling). Take two partitions
Y (0), Z(0) of the unit interval [0, 1] into countably many subintervals. A single step of
the coupling proceeds as follows:
(a) If there is a subinterval a € Y (0) that has the same length as some other
subinterval b € Z(0), then declare a and b to be matched. (Note that the relation
of being matched is symmetric.)
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unmatched subintervals matched subintervals

1
L]
-
:
1
0 N 1
-
:
]
1

Figure B.1: Illustration of the setup for Schramm’s coupling defined in Definition B.3.1.

(b) Reorder the subintervals within ¥ (0) and Z(0) as follows:

(a) Let Q be the total length of all the matched intervals. In both Y (0) and
Z(0), place within (1 — @, 1] all the matched subintervals, ordered by their
size such that the longest matched subinterval is on the left.

(b) In both Y (0) and Z(0), place within [0,1 — Q) the respective unmatched
subintervals from the respective partitions, once again ordered by their size
such that the longest matched subinterval is on the left.

(c) Sample U, U’ ~ Unif([0, 1)) and use these random variables to evolve the partitions
Y (0), Z(0) as follows:

(a) Call the subintervals hy € Y (0) or hy € Z(0) highlighted if U falls into these
subintervals after the reordering described above.

(b) If U’ falls into a subinterval g; € }7(0) such that g; # hy, then merge h;
and ¢;. Do the same for ho and Z(O)

(c) If U’ falls into a highlighted subinterval h; € Y (0), then split hy at U’. Do
the same for hy and Z(0).

(d) Call Y(1) and Z(1) the new partitions that are obtained by the reordering and
the application of the dynamics, and repeat.

See Figure B.1 for an illustration. |

The construction specified in Definition B.3.1 has to be modified slightly to fit the
setting of CFDP. First, we need to convert a permutation into a partition of the unit
interval.

Definition B.3.2 (Cycle structure on a dynamic permutation). Denote by
|7 (t)| the size of the i*"-largest permutation cycle at time ¢ > 0, with the following
conventions: if there is only a finite number k € N of permutation cycles, then
|yU)(t)| = 0 for all j > k, while if two or more elements have the same size, then their
ordering (among each other) is arbitrary. Define

o , (1)
() = (x0) = <|ffmax<Ann<t>>>ieN’ (B.14)

i.e., the ordered sequence of sizes of permutation cycles normalised by the size of
Eax (A, (t)). Abusing notation, we denote by X(™)(#) also the partition of the interval
[0,1/|ax (A, (t)])] into subintervals induced by X (t). |
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Remark B.3.3 (Normalisation of X¥(")(t)). Note that, with this normalisation,
the sum of all the elements in X (t) is n/|%,,..(Am, (t))|, which is roughly ﬁ,
and the permutation cycles with elements on the largest component of the associated
graph process (which is unique with high probability) correspond approximately to the

subinterval [0, 1] of the partition induced by X (t). ¢

All the details required to modify Schramm’s coupling to the setting of CFDP are
explained in [29, Sections 5.2 and 5.3], and we will not reproduce them here in full.
The main modifications of the coupling, this time between EAC0) (t) seen as a partition of
[0,n/|C,,0x(Am, ()] and a random partition of the interval [0, 1] distributed according

to PoiDir(1), are as follows:
(a) Allow for approximate matching of components, i.e., allows for a margin of order
O(n=1/?).
(b) Markers U, U’ that generate the dynamics are sampled uniformly from the interval
[0,1n/|C,ax (A, (t))]], but if one of them falls outside the interval [0, 1], then the
move is not carried out in the initially PoiDir(1)-distributed partition.

(c) A forbidden set F(t) is the set of points that U, U’ must avoid for the coupling
to be successful. This set takes care of the possible errors that may arise due to,
for example, the discrete nature of the permutations or the growing size of the
largest component in the associated graph process.

Remark B.3.4 (Limiting distribution of the cycle structure X(™). In [135,
Theorem 1.1], Schramm’s coupling in the form adapted to CFDP was used to show
that, at any time ¢ > cn with ¢ > 1, the restriction of X(M(¢) to the interval [0, 1] has
the distributional limit

2 () % PoiDir(1), (B.15)

10,1]
where PoiDir(1) is the Poisson-Dirichlet distribution with parameter 1, which is the
unique invariant distribution of X w.r.t. the permutation dynamics [135]. ¢

Note that the largest cycle %g")(cn), for ¢ > 1/2, is typically large (see e.g. [83]).
In the lemma stated below, which is adapted from [29, Section 5.3], we collect results
that give us control over X(™ (t). To understand the limitations in the statement of
this lemma, we need to introduce some extra notation:

Definition B.3.5 (Events relating to the success of Schramm’s coupling).

Let ¢ > 1, fix 8> 0 and set Ts = [$~'/?] — 1 and I.4 = [en,cn + Tp]. Consider
Schramm’s coupling
(X™(0), Z(1))

with Z(0) ~ PoiDir(1). For t € I, 3, define

« N3(X™(t)) to be the number of unmatched blocks in X()(t) whose sizes are

—

larger than 3. Analogously for Ng(Z(t)).

o Np(t) = Ns(X™(1)) + Na(Z(2)).
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e o(8, XM (1)) to be the total length of the blocks of size smaller than 3 in the
partition X(™)(¢). Analogously for Z(t).

» B(t) =B +0(8,XV®) +0(8, Z(t)).
. xﬁ”’UM)(t) to be the largest unmatched segment in X (¢).

Using the above notation, define the following events:
Ai(t) = {B(H) < B**), As(t) = {Np(t) < 5711 (B.16)
|

The next definition captures the key regularity event used in the upcoming argu-
ments.

Definition B.3.6 (Dynamics regularity event for Schramm’s coupling). Define
the event! A3(I.5) by requiring that for any time ¢ € I, g the following three facts
hold:

(a) U,U’ sampled at time ¢ do not fall in the forbidden set F'(t).
(b) The dynamics does not split a component of X (t) of size < \/11/|%,yax (Amr, (£))].

(c) If the dynamics induces a fragmentation in one of the partitions, then it does so
also in the other partition.

Since the event A3(IAC7 ) is crucial for the success of Schramm’s coupling, we will need
the following quantitative estimate (see also [29, eq. (5.7)]) to get uniform control over
the time scale on which Schramm’s coupling remains successful with high probability.

Lemma B.3.7 (Probability bound for As(I.s)). Let ¢ > 3 and 8> 0. Then
P (A5(L0)) <1687 1/12, (B.17)

With this notation and information in hand, we can now state the following key

lemma, adapted from [29, Section 5.3|, which gives us control over the cycle structure
X (t):

Lemma B.3.8 (PoiDir(1) approximation of X("(t)). Fiz ¢ > 1 and B> 0. Let
XM (t) be as in Definition B.3.2. Consider (Z(t))tefc,fg such that Z(cn) ~ PoiDir(1)
is sampled independently of anything else, and at later times the evolution of Z(t) is
governed by the dynamics of the underlying permutation (see [29, Section 5]). Consider
Schramm’s coupling (%(”)(t),Z(t))tefcﬁ, and let ¢ ~ Unif([en,...,en + T3]) be a

uniform random variable in fc,g, independent of anything else. For § € (0,1), define
the event

Dsp = {Hf(”)(q) - 2(Q)“m <o} (B.18)

1See [29, p. 44], where this event is denoted by G and the three defining properties correspond to
the three items before Eq. (5.7) therein.
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Recall the events in (3.34) and in Definition B.3.5. There exist constants C,C" > 0
such that, for n sufficiently large, the following estimate is valid uniformly in 8 and §:

P(75,5) < P (2 (cn)) + P (2, (n) N A (en)) (B.19)
+ P (2, (en) N1 A5 (en)) + P (2, (en) N A5(1ep))
+P ({%g"’UM) (q) > 5/2} N, (en) N Aj(en) N Az(en) N Ag(fc’[-}))

< o(1) +3CBY*log (B71) + 2075 log® (B71) (B.20)
20,

+ 165717171/13 =+ W

The proof of this lemma can be extracted from the various arguments and statements
presented in [135, Section 3]. Alternatively, the precise bounds in (B.19) and (B.20)
are explicitly derived in [29, Section 5]. In particular, the first inequality in (B.19)
is obtained by applying a union bound in the second term of the first bound in the
last display of the proof of [29, Theorem 1.1, p. 45]. The quantitative bounds on the
non-trivial terms in (B.20) can be found in, respectively, the second to last display
in the proof of [29, Theorem 1.1, p. 45] for the terms involving A§ and AS, Lemma
B.3.7 for the term involving A§, and [29, Corollary 5.7] for the last term related to the

maximal unmatched block 3€§”’UM>.

§B.3.2 Recurrence of large cycles

We will make use of Schramm’s coupling in the proof of Proposition B.3.10 below,
which is at the very core of our argument in the proofs of Propositions 3.3.8 and
3.3.10. To this aim, we first use the quantitative estimate in Lemma B.3.8 to derive
the following technical lemma, stating that the Poisson-Dirichlet approximation of the
underlying permutation dynamics is good with high probability over a properly chosen
time interval of diverging length.

Lemma B.3.9 (Pathwise approximation property of Schramm’s coupling).

Fiz e € (0,3) and ¢ > 1. Take any time interval of the form I, = [cn,cn + ay]

with lim,, 0 a, = 00 and a, = o(n'/?%), and denote by F3° = (Fi)ies. the natural
filtration of Schramm’s coupling. For a,b € I. ., define the event that for allt € [a, b]
the cycle structure of the underlying permutation f(”)(t) is well-approzimated by the
process Z(t) introduced above. More precisely, define
Q" (a,b,2) = {Vt € [a,8]: Hie<">(t) - Z(t)” <e}e s, (B.21)
(oo}
pick a sequence (dp)nen such that d, = o(loga,) and d,, — 0o as n — co. Then

P (2% (g, gn + VVdr€)) = 1= o(1) (B.22)

for qn ~ Unif (1. ,).
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Proof. We will use the estimates in Appendix B.3.1. In particular, with the choice of
an and d, as in the statement of the lemma, we set § = §,, = ¢/d,, and § = 3, such
that a,, = fﬁgl/ﬁ — 1, and note that Lemma B.3.7 with IACﬁ = I., guarantees that

P (As(le) = 1 - o(1) (B.23)

as soon as a,, = o(n'/%5),

The key event Asz(I.,y), occurring with high probability, guarantees regularity of
the dynamics uniformly over the time interval I, ,. On this event, we can find a (much
smaller) random subinterval [g,, g, + v/dy ], still of diverging length, for which the
Poisson-Dirichlet approximation up to the threshold ¢ is valid with high probability.
Indeed, with the notation as in (B.18), we can bound

P00+ Vi 9) =PV € g+ V][00 =200 <e)
> P<@s/dn,5n ﬂA3(Ic,n)>

=P(Z/dn,6,) = B(Ze/dn 5, N ASLein))
>1-— ]P’(%C/dn,/an) —o(l)>1-o0(1),
where the first inequality is true because, on the event As(I. ), if at time ¢, € I, we
have | X (gn) — Z(qn)|loo < €/dn, then the next v/d,, (coagulation or fragmentation)
moves of the dynamics can only increase the sup-norm in a bounded way. To see why,
observe that on the event Aj3(I.,) only the following can occur:

o Due to Definition B.3.6[1.], we can leave out the effect of fragmentations of tiny
components. Furthermore, Definition B.3.6[3.] guarantees consistency of moves
between the two coupled cycle structures.

e Coagulation or fragmentation within the matched components can increase the
sup-norm by at most %, which is the margin allowed by the approximate
matching rule. This discrepancy can be made arbitrarily small by taking n large
enough. This follows from Definition B.3.6[1.] and the definition of a forbidden
set F(t).

« On the event Z. 4, g, , the largest unmatched component satisfies X" (g,) <
55— This guarantees that, during the interval [g,, ¢, + v/d,], the coagulation or

fragmentation moves involving at least one unmatched component can, in the

Vdn ke < B

worst case, increase the sup-norm by at most ) Y7 5= <

The other inequalities follow, respectively, from (B.23) and (B.20), with the choice of
parameters as here. O

Using the pathwise approximation result in Lemma B.3.9, we can finally state the
core proposition of this appendix (which was used to obtain (3.96)):

Proposition B.3.10 (Infinite crossings of level 1 —¢ for %Yl)) Fize € (0,3) and
c> % Take any time interval of the form I, = [cn, en+ay] with lim,_, o a, = 00 and
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an = o(n'/?%). Consider the event E,(c, ¢, k) that the process (.’fg") (t) — (1 —g))gnton
changes sign k € N times along an increasing sequence of times (ty)i_,, i.e.,

Enlee, k) = {3ty XMt —1) <1—e, xM(ty) >1-¢}. (B.24)
For any k € N,
lim P(&,(c,e,k)) = 1. (B.25)
n— oo

Proof. The idea behind the proof is that if the coupling described above holds, then the
behaviour of the PoiDir(1)-sample will induce the desired large cycles in the dynamic
permutation.

Let I., = [en,cn + ay], and denote by F3¢ = (F;)cs, the natural filtration of
Schramm’s coupling. For any a,b € I, € € (0, %) and k € N, define the event that
large cycles in the Z process recur more that s times:

Q™ (a,b,e,k) = {#{t € [a,b]: Z1(t) > 1—¢c} > K} € F;°. (B.26)
The key observation is that, for any 0 < A < ¢,
(#{t € [a,b]: (1) > 1 -} >k} DO (a,b,\) N (a,b,e + \,5).  (B.27)

This is true because if the supremum norm between X(™(t) and Z(t) is at all times
bounded by A, then every occurrence of a cycle larger than 1 — e 4+ A in Z(¢) induces a
cycle of size at least 1 — & in X" ().

From Lemma B.3.9, it follows that for ¢, ~ Unif(1.,) with d, — oo and d,, =
o(log ay,), the well-approximation event QV*(qy, ¢, + v/dy,€/2) occurs with high prob-
ability. Recall that, at the beginning of the coupling, Z(cn) ~ PoiDir(1) independently
of everything else, and the dynamics of the coupling is such that PoiDir(1) is invariant.
Denote by P; the space of size-ordered countable partitions of the unit interval [0, 1]
into subintervals, which is the space over which the measure v = PoiDir(1) is defined.
Introduce the notation

LEZ{PEP12P1>1—E}, (B28)

where P; denotes the first, and therefore the largest, element of P. By [109, Theorem
1.2], for any ¢ € (0, 1),

v(Le) = —log(l —¢) > 0. (B.29)

Recall from [135] that the evolution of Z is a time-homogeneous Markov process and
that v = PoiDir(1) is the unique invariant measure of this process. Since, for any
e € (0, %), the set L. has a strictly positive v-measure and the starting point of the
process is sampled according to v, it follows that the hitting time of L. is finite a.s. and
has finite expectation. Furthermore, the return times to L. are all finite a.s. and, by
the Kac recurrence time lemma [125, Theorem 4.6], have finite expectation, equal to
1/v(L.). Consequently, for any fixed number of occurrences x € N, any fixed threshold
for cycle sizes ¢ € (0, %), random times g, ~ Unif(I;,) independent of anything else,
and any d,, — o0,

lim P(Q"(qn, ¢n + dn, e, k) = 1. (B.30)

n— oo
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Therefore, for ¢, ~ Unif(I.,), any x € N and any sequence (dy,)nen such that d,, =
o(logay) and d,, — 0o as n — oo,

]P’(QWA(qn,qn +\/d, &) Q™ (g, g + Vo, &, n)) —1-o(1), (B.31)

which by (B.27) yields the desired result. O

Remark B.3.11 (Extension of Proposition B.3.10 to the degree-two graphs
with rewiring). In [69] and [29, Section 5.2] it is noted that Schramm’s coupling
can be adapted to the setting of coagulation-fragmentation dynamics that keep the
measure PoiDir(0), 6 € (0,1], invariant. An example is a dynamic graph model with
all degrees equal to two and endowed with a rewiring dynamics, which corresponds to
a coagulation-fragmentation dynamics with invariant measure PoiDir(1/2) (see [120]).
Since vp(Le) > 0 for any 6,¢ € (0,1) and vy = PoiDir(6), the proof of Proposition B.3.10
can be adapted to the aforementioned situation. ¢

In conclusion of this section, we state a corollary of the previous proposition, which
is useful in Section 3.3:

Corollary B.3.12. In the setting of Proposition B.3.10,

<5°( g K) n{T! Vo = (3 +5)n}> = o(1). (B.32)

Proof. First, let us rewrite the desired expression as

(5C( no e i) N T oo = (3 + 6)n}) (B.33)

_ c n _n,vg
_]E{ (5 (=52,65) | nvo) Il{ nv0>(é+6)n}:| ’

Since the inner part of the right-hand side is bounded between 0 and 1, by dominated
convergence theorem it is enough to show that

(SC( =0 e k) | T ) H{Ti‘voz(%-ké)n} = op(1). (B.34)

The core observation is that arguments based on Schramm coupling from Proposi-
tion B.3.10 work even under the conditioning in (B.34). From the perspective of the
cycle structure, on the event {T;¥, > (3 4 d)n}, at time 7)), the giant component
of the associated graph process is enlarged by a connected component whose size can
be, with high probability, uniformly bounded by C'log?n, for some C' > 0. But the
effect of these moves is already captured by the forbidden set construction (recall
Definition B.3.6 and the discussion below Remark B.3.3), and a quantitative bound on
the effect of these moves is expressed in Lemma B.3.7. Therefore, by repeating the
arguments from Lemma B.3.9 and Proposition B.3.10, we obtain (B.34), which yields
the desired expression.

O
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§B.4 Mixing upon dropdown on the largest cycle

Recall that for two laws u, v defined on the same countable probability space
drv (p,v Z |t — V- (B.35)

Fix n € N. Recall the short-hand notation M = |6, (A, (T;},,))]. We wish to show
that, on the events (recall (3.66))

Mg, 9) ={|SUPp P (T o)) > M} N QET, ) NQP(TL,),

n,vo

Mo(e) = {3tr € (T, TY o +an): XM (1) > 1€,

n,vp? N,V

(B.36)

the following estimate (recall (3.70)) is valid:

dpy (un (tr.), Unif (€. (Am. (tL)))) <e. (B.37)

On the event M;(e,d), the ISRW-distributiuon at time T}, is uniform over a
single cycle supported on the largest component of the associated graph process (due
to QEO(TY ), which is larger than eM (due to {|supp(u™*° (T}, )| >eM}) by
assumption. Therefore,

n,v S L7 UESUPp( nvO(T’rlLL'u ))
(T ) § — M : ° (B.38)
=0, otherwise.

We will use (B.38) to provide us with an upper bound on the mass carried by the
elements on the giant component of the associated graph process.

On the event Mj(g,0) N Ms(e), the largest cycle at time ¢;, necessarily carries
some of the mass of the ISRW-distribution, since the initial size of the support is larger
than the size of the subset not covered by the largest cycle (see Figure B.2 for a visual
explanation).

|
I i 1 Tow
| - i

Figure B.2: The first line segment represents the cycle structure of the permutation restricted
to the giant component of the associated graph process at time Tyﬁvo. The red line represents
the size of the single cycle that contains the full mass of the ISRW-distribution. The second
line segment represents the same at time tr: a cycle of size (1 — 52)M has appeared, which
necessarily carries some of the mass of the ISRW-distribution.

We proceed by computing the worst-case {!-distance between the two distributions at
time tr,, which will yield the desired inequality in (B.37). Put A = |6,,..(Am, (t1))|— M,
which represents the growth of the largest component of the associated graph process
compared to its size at time T,%U Note that the uniform distribution in (B.37) gives

the individual elements the following mass:

Unif (€00 (Am, (£2)))(0) = {“A v € G (Am, (12)): (B.39)

0, otherwise.
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To compute the worst-case ['-distance at time ¢, we maximise the individual summands
in (B.35). To do so, we work with a distribution x! supported on the giant component of
the associated graph process that puts mass 1/(eM) (see (B.36)) on the elements outside

the largest cycle of size (1 —e?)M, and spreads the remaining mass ¥ = 1 — EQJEWT+A
over the largest cycle. In symbols,
(1—522)1\/1’ vex(t),
'u:rl =140, v ¢ %max<AHn (tL))a (B'4O)

1 otherwise.

The measure uf constructed in this way gives the bound

oy (70 (81), UNIF( e (An, (42))) ) < drv (57, Unif(60(An, (1)) (BAD)
Finally, we compute, using (B.35) and (B.39)—(B.40),

dry (it UNE (0 (A, (12)))) = 5 [|UNIE (€00 (A, (12))) — 1]

_ L LN S T 1=
_2(5 M+ A) LM M+A]+2(1 E)M[M+A (1—52)M] (B.42)
S A e2M A

eM M+A M+A
On the event QF® (T}Y, ), the sizes of all but the largest component are uniformly

bounded by Cn?/? for some C > 0. Therefore, for a, growing slowly enough, more
concretely a,, = o(n'/3), it follows that A = o(M) = o(n). Therefore

dry (,/l (1), Unif(%,..(Ar, (tL)))) <e—e210(l) <e, (B.43)

where the last inequality is true for n large enough.

§B.5 Mixing in dynamic degree-two graphs

§B.5.1 Permutations and degree-two graphs

Let m € S, be a permutation of [n] = {1,...,n}. Such a permutation admits a
decomposition into distinct permutation cycles, and this decomposition can be used to
create a mapping between permutations and graphs whose vertex degrees are all equal
to two. Note that this mapping is not a bijection between the set of all degree-two
graphs on n vertices $3%2 and the set of all permutations of n elements S,. Such
a bijection is not possible in general: while the connected components of degree-two
graphs indeed are cycles, permutation cycles also carry information about the direction
of traversal within them.

Let us nonetheless construct two mappings between these sets. There is a natural
bijection between [n] seen as the set of permutation elements and the same set seen as
the set of graph vertices. Thanks to this bijection, we will (abusing notation) make
no distinction between the two sets. Moreover, given a permutation m € S,,, we can
construct a degree-two graph with n vertices as follows:
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(a) Set e to be the least element of =, i.e., the element “1”.
(b) Add an edge between the vertices e and 7(e).

(c) Set e to be m(e), and repeat step 2 until the entire permutation cycle containing
e is traversed.

(d) Once the entire permutation cycle is traversed, set e to be the least non-traversed
element of m and repeat from step 2 onwards. If there is no such element, then
the entire permutation is traversed and the algorithm terminates.

Note that the mapping induced by this algorithm is a surjection, and hence the
relation “being represented by the same degree-two graph” is an equivalence relation
on S,. Equivalence classes are formed by permutations whose cycle decomposition
differs only in the reversal of the cyclic order between some of the cycles. For example,
take w1, m9 € S3 such that

m=(1,2,3), m=(321). (B.44)

By following the algorithm described above, we see that these two permutations are
represented by the same degree-two graph.

When constructing the mapping from &4°82 to S,,, the problem of cycle orientation
manifests itself again. Since all the connected components of the degree-two graph are
cycles, it is trivial to represent them as permutation cycles, but we are free to choose
the direction of traversal of these connected components. These discrepancies are not
relevant, since none of the mathematical objects used in Chapter 3 depends on the
direction of traversal of the permutation cycles. The most important property for our
results is the size of the permutation cycles, or equivalently the size of the connected
components.

§B.5.2 Infinite-speed random walk mixing on degree-two graphs

To connect the result of Chapter 3 to our previous work describing mixing of random
walks on top of configuration models endowed with rewiring dynamics (see [9, 10, 11]),
we note that rewiring of degree-two graphs and CFDP can easily be related to each
other (recall Figure 3.7). Our techniques and results can be adapted to the setting
where the underlying geometry is modelled by a graph process starting from the

configuration where all the vertices have a self-loop, equipped with rewiring dynamics.

This process has been previously studied in [120].

To state these results, let us first define the process and the underlying geometry.

The following definition are an adaptation of Definitions 3.1.4 and 3.1.6:

Definition B.5.1 (ISRW on a graph). Take a sequence of graphs (G,(t)):en, and
a vertex vg € [n]. Denote by CC(G,,(t),v) the connected component of the graph G, (t)
that contains the vertex v. Formally, the infinite-speed random walk (ISRW) starting
from vy is a sequence of probability distributions (™0 (¢))tcn, supported on [n], with
initial distribution at time ¢t = 0 given by

p?(0) = (1" (0)) wefn) » (B.45)
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where p77°(0), the mass at w € [n] at time ¢t = 0, is given by
1
Lo (0) = | e @ € €CGR(0), ), (B.46)
v 0, w ¢ CC(G(0),v),
and with distribution at later time ¢ € N given by
pe(t) = (™ () wepny » (B.47)
where 1
() p—— ot - 1). (B.48)
[CC(Gn(t), w)| 2

u€CC(Gr(t),w)

Informally, ISRW spreads infinitely fast over the connected component it resides on. B

Definition B.5.2 (Dynamic degree-two graph with rewiring dynamics). Fix
the vertex set V = [n] and let G, (0) be the graph with all vertices having a single
self-loop. At any later time t € N, G,,(¢) is obtained from G, (t — 1) as follows:

(a) Pick two edges ej, es uniformly at random without replacement from the set of
edges within G, (t — 1).

(b) Break edge e; into half-edges k7', h? and edge ey into half-edges h{', hF (see [78,
Section 7.2] for a definition of a half-edge).

(¢) Graph G, (t) has all the unbroken edges of Gy, (t — 1), while the broken edges
e1,es are replaced by a uniform choice from 2 possible sets of new edges:
{(hi', h3), (WP S} A (R B, (AP, b3}

We call the sequence (G, (t))ten, the dynamic degree-two graph with rewiring dynamics.
|
In this setting, we state the following theorem, analogous to Theorem 3.1.20:
Theorem B.5.3 (Mixing profile for ISRW on dynamic degree-two graphs
with rewiring).

(1) Uniformly in vy € [n],
TV
“rvo 4ob, (B.49)

where u¥ is the non-negative random variable with distribution (recall Defini-
tion 3.1.11(1))
P(ut < u) = ¢(u), u € [0, 00). (B.50)

(2) Uniformly in vy € [n],

(D2 (un))uepo,) S (1 — C(u)]l{u>uu})ue[0m) in the Skorokhod M -topology.
(B.51)

Proof. Since Schramm'’s coupling and related arguments are fully applicable in this
setting (see Remark B.3.11), the arguments from Section 3.3 can be used again with
only slight modifications, as outlined below:
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(a)

Associated graph process and drop-down time: The two constructions
carry over without modifications. Even if a cycle-creating edge in the associated
graph process produces a fragmentation only with probability 1/2 (since such an
edge can with equal probability tear a segment of a cycle apart and create a new
cycle or put the segment back into its original cycle in reversed order), this does
not influence the arguments that underlie Lemma 3.3.2.

Fast mixing upon drop-down: Since the proof of Proposition 3.3.10 is based
on Proposition B.3.10, which can be adapted to the alternative setting (see
Remark B.3.11), we conclude that Proposition 3.3.10 also carries over.

Drop-down in a single cycle: Lemma 3.3.3 requires no adaptations.

Mixing profile: Since all the ingredients used in the proof of Lemma 3.3.11 and
Theorem 3.1.20 carry over, the proofs themselves do likewise.

O

Remark B.5.4 (ISRW on a dynamic degree-two configuration model). The
setting of Theorem B.5.3 is different from a degree-two configuration model with
rewiring, where the edges in the initial graph would be created by a random matching
of half-edges. We conjecture that if the underlying geometry were modelled by a
degree-two configuration model with rewiring, then ISRW would mix in op(n) steps
and the mixing profile at scale n would be trivial. ¢
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CHAPTER

Communication protocol for
a satellite-swarm interferometer

This chapter is based on the following article:

O. Nagy, M. Pandey, G. Exarchakos, M. Bentum, and R. van der Hofstad. Communi-
cation protocol for a satellite-swarm interferometer. arXiv preprint arXiv:2312.15814,
2023.

Abstract

Orbiting low frequency antennas for radio astronomy (OLFAR) that capture cosmic signals in
the frequency range below 30MHz could provide valuable insights on our Universe. These
wireless swarms of satellites form a connectivity graph that allows data exchange between
most pairs of satellites. Since this swarm acts as an interferometer, the aim is to compute
the cross-correlations between most pairs of satellites. We propose a k-nearest-neighbour
communication protocol, and investigate the minimum neighbourhood size of each satellite
that ensures connectivity of at least 95% of the swarm. We describe the proportion of
cross-correlations that can be computed in our method given an energy budget per satellite.
Despite the method’s apparent simplicity, it allows us to gain insight into the requirements
for such satellite swarms. In particular, we give specific advice on the energy requirements to
have sufficient coverage of the relevant baselines.
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4. Communication protocol for a satellite-swarm interferometer

§4.1 Introduction

§4.1.1 Motivation and setting

Long-wavelength radio astronomy (also called Low-frequency radio astronomy) is
targeting for an instrument for observing the Universe at frequencies below 30 MHz.
For frequencies above 30 MHz several instruments have been implemented in the
past two centuries, like LOFAR (LOw Frequency ARray) [72] in the Netherlands
and its European extension ILT, the International LOFAR Telescope. However, at
frequencies below 30 MHz, Earth-based observations are limited due to a combination
of severe ionospheric distortions, almost full reflection of radio waves below 10 MHz,
solar eruptions and the radio frequency interference (RFI) of human-made signals.
Scientifically this frequency band is extremely interesting, for instance providing
information from the faint signals from the Hydrogen in the Cosmological Dark Ages
and Cosmic Dawn, the study of Solar activity and space weather at low frequencies,
the measure of the auroral radio emission from the large planets in our Solar system,
the determination of the radio background spectrum at the Earth-Moon L2 point,
the creation of a new low-frequency map of the radio sky, the study of the Earth’s
ionosphere, and the detection of bright pulsars and other radio transient phenomena
at very low frequencies [89].

Many paper studies have been performed in the last decade, to open up this last,
virtually unexplored frequency domain in the electromagnetic spectrum [22, 44].

The basic idea is to form a swarm of satellites, each sampling the astronomical
signals. Together, they work as an interferometer — in practice, this means that all the
useful information is obtained only after cross-correlation of a pair of measurements
from 2 different satellites.

In an ideal setting, one would carry out all the possible cross-correlations; in practice,
there are limitations coming from a finite energy budget, data routing problems and
others.

§4.1.2 Modelling assumptions

The problem under consideration is characterized by its inherent complexity, encompass-
ing a multitude of complications stemming from various sources, including the intricate
dynamics of the system, challenges associated with data transmission, equipment mal-
functions, and other factors. It is important to emphasize that our primary objective
is not to achieve a high degree of realism in the modelling process. Instead, our focus
lies in conducting a feasibility study under simplified, yet realistic, assumptions. By
delineating these assumptions, we aim to establish the extent of applicability of our
investigation.

Number of satellites. Throughout this chapter, we denote the number of satellites
in our swarm by n, and we think of n as being large. In our analysis, we thus make
the explicit assumption that the number of satellites involved is large, yet remains
fixed throughout the duration of the study and does not undergo any changes over
time. We acknowledge, however, that allowing for dynamic changes in the satellite
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constellation could introduce valuable insights into the effects of various scenarios, such
as catastrophic malfunctions or the reinforcement of the satellite swarm through the
deployment of additional satellites.

By considering the possibility of catastrophic malfunctions, we could model the
impact of severe failures within the satellite network. These malfunctions could include
critical subsystem failures, orbital anomalies, or unexpected events leading to the loss
of functionality of one or more satellites. Incorporating such dynamic changes would
allow us to assess the system’s resilience and the overall robustness of the network in
the face of unforeseen disruptions.

Furthermore, considering the deployment of additional satellites to reinforce the
existing swarm introduces an important aspect of scalability and adaptability. By
accounting for the potential deployment of extra satellites, we can evaluate the system’s
ability to respond to increasing demands, expand coverage, or mitigate the effects
of satellite failures. This consideration becomes particularly relevant when exploring
strategies for enhancing network reliability, improving signal coverage, or addressing
future capacity requirements.

Position and movement of satellites. We adopt the assumption that the initial
distribution of satellites is uniformly random within a unit cube. This means that each
satellite’s position is independently and uniformly chosen within the interval [0,1] for
each of its three Cartesian coordinates.

The decision to employ this uniform random distribution can be interpreted as a
deliberate choice not to pursue an optimization approach for satellite deployment in
our study. Instead, we aim to investigate communication networks governed by spatial
randomness. This approach allows us to capture the inherent unpredictability and
diversity present in real-world deployments.

It is important to note that the assumption of static satellites imposes limitations
on the applicability of our results. Our findings are most suitable for scenarios where
the assumption of static satellite positions is a justifiable approximation. For instance,
an illustrative example could be a satellite swarm deployed near one of the stable
Lagrange points in the Earth-Sun system. In such cases, the gravitational forces
and orbital dynamics may cause satellites to maintain relatively fixed positions over
extended periods, rendering the static assumption reasonable. We do wish to stress
that the uniformity assumption could arise as the stationary distribution of dynamical
swarms of satellites, and thus presents a snapshot of the dynamical system. Further,
our approach can be straightforwardly adapted should such a stationary distribution
be non-uniform.

Structure of the communication network. In addition to the previously men-
tioned assumptions, another key assumption we make in our study is that the com-
munication network between the satellites can be represented as a directed graph.
Specifically, we construct this graph by connecting each vertex to its k nearest neigh-
bours based on Euclidean distance, where k is chosen appropriately to strike a balance
between network connectivity and energy consumption. This type of graph, where
each vertex has directed edges connecting it to its k£ nearest neighbours, is commonly
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referred to as a k-nearest-neighbour (k-NN) graph.

The choice to model the communication network as a k-NN graph may initially
appear arbitrary. However, our research findings demonstrate that this network
representation possesses numerous desirable properties when k > 4. By examining the
network characteristics and performance metrics associated with k-NN graphs, we can
gain insights into the behaviour and functionality of the communication system under
study.

While there exist alternative network models that could be considered within
this setting, such as the random geometric graph, we have intentionally limited our
investigation to focus solely on k-NN graphs due to its simplicity combined with the
valuable insights that it provides.

Energy expenditure. We introduce a significant simplification regarding the energy
consumption of satellites. Specifically, we assume that there are only two primary ways
in which a satellite can consume energy: communication-related activities and the
computation of cross-correlations based on acquired measurements. This assumption,
while simplifying the analysis, entails the exclusion of other potential energy expenditure
factors that may exist in real-world scenarios. This simplified approach allows us to
isolate and examine the energy requirements directly linked to these essential functions
and evaluate their effects on system performance and efficiency.

We investigate a setting in which the total energy spent on communication is
comparable to the total energy spent on computation, as this is the most interesting
setting. Indeed, when either of the two energies is negligible compared to the other,
we can ignore that aspect, making the problem significantly simpler. Let ¢ denote the
computation costs per cross-correlation, and F,.x the total amount of energy at the
disposal of each satellite. Furthermore, we desire that the total amount of computation
power is, on average, a S-fraction of the total energy, i.e.,

(;(;L) = 18 Ema. (4.1)

Without loss of generality, we may work in units such that ¢ = 1. The parameters
Finax and S will then serve as the key tuning parameters in the chapter.

Data flows in the network. We make the assumption that all data is readily
available “on-demand” as long as a viable path exists between the data source and
the destination. This assumption implies that once a valid communication path is
established between two satellites, the necessary data can be efficiently transmitted
and accessed without delay.

As our analysis progresses, we will demonstrate that, for appropriate values of k,
there exists a path connecting nearly all pairs of satellites in the network. This observa-
tion underscores the connectivity and accessibility of the communication infrastructure
we consider.

However, it is important to note that our assumptions disregard various factors
related to data flow within the satellite network. Specifically, we neglect the effects of
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routing, network capacity limitations, finite-speed propagation delays, noisy channels,
and the need for retransmissions, among others.

§4.1.3 Previous works
Engineering applications of k-INN graphs

There is a plethora of challenges on wireless networks to which k-NN models have been
applied. This is mostly because of its simplicity to implement, its decentralized nature,
and its good performance. However, each challenge requires a slight modification
of the algorithm. Here, we review k-NN based wireless topologies and transmission
power control, as well as node placement, as they are the most relevant to the LOFAR
connectivity problem we study.

Blough et al. [32], in one of the earliest studies on k-NN-based topology control,
ensure that every node in a mesh wireless network is connected to at least k other
neighbours. Each node adjusts the transmission range to maintain k£ bidirectional
links. Supported by other studies (e.g., [31, 105]), the authors argue that the overhead
generated on the routing layer to maintain a connected topology graph (a.k.a. large
strongly connected component) using unidirectional links outweighs the benefits. The
size of the routing tables that need to be maintained increases with unidirectional
links, since any pair of nodes needs two paths to exchange information back and
forth. Therefore, the vast majority of protocols in the L2 and L3 OSI layers assume
bidirectional links. However, the OLFAR application does not require bidirectional
exchange of interferometric observations between any pair of satellites. The cross-
correlation of signals can happen at any aggregation point; hence, not all pairs of
satellites need to exchange data.

Wireless coverage is another challenge to which k-NN algorithms have been applied.
For instance, [90] and [84] devise algorithms to adjust the heading of mobile wireless
sensors such that all sensors maintain a neighbourhood of size k indicating convergence
of the group of sensors to the same direction. In a relevant problem, node placement
and localization, the authors of [118, 152] use a fingerprinting method to localize
a wireless device based on the received signal strength of the k nearest neighbours.
Extending the same idea, but using the channel state information (CSI) instead of the
signal strength, has been proposed by [136].

Finally, in resource allocation problems of 6G mobile telecommunication networks,
k-NN has been used as a classification method to cluster data. In [148], k-NN is
used to dynamically allocate the radiating elements of an antenna array to k users
based on their spatial patterns. A set of classes of quality of service and channel
state information are defined, and best resource allocation is devised. k-NN is used to
assign the current channel and quality conditions of each user to one of those classes
and, based on that, to allocate the radiating elements to form the necessary beams
in a massive multiple-input-multiple-output (MIMO) setup. The expected response
time of radio resource allocation decisions is in the range of < 1 ms [50]. In the
OLFAR communications scenario, where satellites continuously change their position,
the relevant resource allocation decisions need to also be performed sufficiently fast.
Though we currently focus on static scenarios, the aforementioned study indicates the
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benefits of k&-NN even in more dynamic settings. The authors of [98] have used k-NN
graphs to reduce a wireless node’s complexity and calculation overhead of the best
time schedule of the communication to their neighbours.

Previous studies confirm the wide adoption of k-NN graphs in various problems in
wireless networks. Yet, these studies view wireless networks as undirected graphs; an
unnecessary assumption for OLFAR. We extend those efforts with topology control of
unidirectional orbiting swarms for OLFAR applications.

Connectivity properties of k-NN graphs

The connectivity properties of k&-NN graph have received substantial attention, both
in engineering and mathematical literature [1, 15, 16, 14, 52]. In [1], the behaviour of
the shortest path distance in weighted k-NN graphs is studied. In [52], probabilistic
properties, like the expected number of connected components of the k-NN graph for a
random set of points are discussed.

In contrast to wired networks, wireless networks usually do not come with a fixed set
of links between nodes; furthermore, these wireless connections need not be bidirectional.
In a situation when one is given a network of wireless nodes distributed at random,
e.g., in a way modelled by a Poisson process, it is natural to ask under what conditions
is it reasonable to expect a “fully connected” network of nodes. Here we will consider
nodes broadcasting with a fixed finite range of transmission, but we allow for these
ranges to vary between the nodes. Naturally, the answer depends on the nature of links
(unidirectional vs. bidirectional) and the precise meaning of the term fully connected.

The studies on connectivity properties of k-NN graphs carried out by the engineering
community focus on a model where each of the links allows for bidirectional commu-
nication and these links are established between k-nearest neighbours. Originally,
the research revolved around “magic numbers”, that is, values of k which with high
probability lead to a network connected in a sense that there exists a path between
any two nodes (see e.g. [94, 117] and many others). It has been suggested that these
“magic numbers” can be any of the integers between three and eight. A breakthrough
came in the article [153], where the authors realized that to maintain connectivity as
the area of the square in which we place the nodes (denoted by A) tends to infinity,
while the intensity of the Poisson process governing the nodes remains constant, each
node needs to be connected to a number of neighbours that is of the order log A. This
marks a departure away from the idea of a universal “magic number”. Furthermore, the
same article provides some bounds for the critical value, multiplying log A, describing
the zero-one law related to this notion of connectivity.

These results have stimulated a rigorous mathematical investigation. In a series
of articles [15, 16], the authors formalize the idea that, given the setting of [153],
connectivity is indeed obtained when k is of the order log A, and first provide a much
tighter bound on the critical multiplication constant (0.3043 < ¢* < 0.5139). Later,
they invent a method to compute this critical constant precisely. Further results in
these directions are for example [14].

All of these results concern the case with bidirectional links, which is not our
setting. For a directed version of this problem, where connectivity is given by an
existence of a directed path between any two nodes, the article [15] presents behaviour
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similar to the undirected model, that is connectivity threshold at k = ¢* log A, with
0.7209 < ¢* < 0.9967. It should be noted that these results concern asymptotic
behaviour when n grows very large, which limits their direct applicability.

§4.2 Communication network within the swarm

§4.2.1 Connectivity & strongly connected components

As outlined in Section 4.1.2, we assume that the communication network inside the
swarm is modelled as a directed graph. Ideally, one would have a network that allows
for communication between any two satellites. In mathematical terms, this would mean
that the largest strongly connected components (LSCC for short) is the entire k-NN
graph; i.e., there exists a (directed) path between any two vertices. On the other hand,
such a strong guarantee in a spatially random network could be quite energetically
demanding.

1.0 1

0.8 A

o
o
L

relative size of LSCC.
©
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Figure 4.1: Mean fraction of vertices in the LSCC for different sizes of the graph and
ke{2,.. .12}

In this section, we show simulations that shed light on the effect of the choice of
the parameter k on the size of the LSCC. Our results are plotted in Figure 4.1. This
data shows that, in the setting of this study, it makes little sense to consider values
of k < 3, since there the connectivity is simply too low. Starting with k = 4, we see
that the LSCC typically spans at least ~ 90% of vertices in the graph. While this
choice already provides a network that behaves in the required manner, it appears that
the optimal choice of & would be k = 5, since, on the one hand, there is little to no
improvement in the typical size of the LSCC for larger values of k, while larger values
of k lead to higher energy requirements for maintaining communication.
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§4.2.2 Empirical distribution of baseline lengths

To obtain high-quality data from an interferometric observation, it is desirable to have
target observations made with various baselines. In this section, we study the length
of the longest baseline within the LSCC and the distribution of baseline lengths. Note
that given our assumption about the geometry, the longest possible baseline has length
V/3 ~ 1.73 — this corresponds to the diagonal across the unit cube. In our results, we
confine ourselves to the parameter regime n = 0 — 1,000, and k € {4,5,6}.

In Figure 4.2a, one can see the scatter plot of the lengths of longest baselines within
the LSCC for k£ = 5. In the regime of small n’s (n < 200), irrespective of the value
of k, the length of the maximal baseline within the LSCC varies considerably. On the
other hand, for swarms with at least ~ 200 satellites, we observe less variance around
the mean. Scatter plots for k = 4,6 can be found in Appendix C.

L] L]
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g lip0nigds . ®
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o] 8% 3
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number of vertices
(a) Scatter plots of maximal baseline lengths (b) Histogram of baseline lengths for n = 560,
fork=5 k=>5.

Figure 4.2: Illustrative results related to baseline distribution.

Not only the maximal baseline is important for observation, but also their distribu-
tion. Our simulations show that the distribution of baseline lengths within the LSCC
is well spread-out and spans all the way from very short to almost maximal possible
lengths. A representative example of this distribution can be seen in Figure 4.2b. More
histograms can be found in Appendix C.

§4.2.3 Distribution function for communication costs

Recall from Section 4.1.2 that we have n satellites distributed uniformly in the cube
[0,1]3. Let U be a uniformly chosen satellite. The locations of the satellites close to U
can be well approximated by those in a homogeneous Poisson Point Process (PPP)
of intensity measure n times the Lebesgue measure. For such a PPP, the number of
satellites in a region A of volume Vol(A) is Poisson with parameter nVol(A), while the
number of satellites in disjoint regions is independent. Indeed, for a PPP, the total
number of points is Poisson with parameter n, rather than equal to n, while the point
locations are independently uniformly distributed. Since the Poisson distribution is
highly concentrated, a Poisson distribution with parameter n is quite close to n, so it
makes little difference to work with a Poisson number of parameter n or with precisely
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n. When rescaling distances by n'/3, the PPP becomes of unit intensity, allowing
to describe the local environment of the uniform satellite U. While this accurately
describes the local environment of satellites in the interior of the cube, for satellites
closer to the boundary, this obviously creates some inaccuracies that we aim to describe
using finite-size corrections.

Let the cost of transmission be Py (k), defined as

Poi(k) := R, (4.2)

where Ry, is the distance to the kth nearest neighbour. Let X, = |B,(U)| denote the
number of points in the ball of radius r around the point U. By definition of a Poisson
point process, X, is distributed as a Poisson random variable with parameter equal to
the volume of a ball times a parameter which depends on n as 473 /3n.

By this observation, we can compute the probability that Py (k) > ¢, for ¢ > 0, as

k—1
P(Po(k) >c) =P(X s <k-1)=> P(X /=)
j=0
_ 7167)\(6) )‘(c)j , (4 3)

where A(c) = 4mnc? /3.

It follows that the cumulative distribution function (CDF) of Py (k) is given by

(4.4)

To obtain the probability density function, we differentiate (4.4) with respect to ¢, to
obtain

k—1 k—2 ;
_ Ae)? _ Ae)?
Frouiy(e) =e MOy 23 e j!)
Jj=0 j=0
e k—1 (e
= (1511)'6 MAN(e). (4.5)
Substituting A(c) = 4mnc? /3 gives
3 (4nn\F Tl _aasre
O e B (40

Recall that the probability distribution function of the generalized gamma distribution
is given by
2 pd—1o—(%)"
fGG($7a7dap) = (ad)
r()
P

(4.7)
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where d,p > 0 are so-called shape parameters, and a > 0 is the scale parameter.
Comparing (4.6) with (4.7), we see that the transmission costs are distributed as a
generalized gamma distribution with parameters

o\ ~2/3
Frua(€) = foa ( %) 5 Z) . (1.9

This is the approximate transmission cost density for large numbers of satellites, to
which we can compare our simulations that involve finite-size corrections, as discussed
in more detail in the next section. In particular, (4.8) implies that the transmission
cost of a satellite Py (k) scales as

n2/3Py (k) > Py, (4.9)

where Py is distributed according to the generalized gamma distribution in (4.8) with
n=1.

After having established the distribution of the powers of the swarm of satellites,
observe that the maximal energy of the satellites is given by Ey,ax, which is a finite
constant. The generalized gamma distribution, however, has an unbounded support,
which means that not all connections present in the k-NN graph can actually be
established by the swarm. In practice, the empirical distribution of transmission
costs will therefore be supported only on the finite interval [0, Fi.x] and one could
approximate it with a truncated distribution which has density

[ (©) = fpy (1) (©) (4.10)

for ¢ € [0, Emax], and is equal to Epax with probability foEmax [P (k) (8) ds.

In Section 4.3, where we study the performance of our communication and compu-
tation system, we investigate the LSCC of the realized connections of the swarm as a
function of the key tuning parameters 8 and Eiax-

§4.2.4 Finite-size corrections

The distribution function for communication costs derived in the previous section was
obtained in the limit of large numbers of satellites. Effectively, this ignores the fact that
the cube has a boundary. This is in contrast with the setting at hand, where we assume
that all the satellites are restricted to be within a unit cube, thus introducing finite-size
corrections. Unfortunately, the error introduced by these finite-size corrections is
significant when considering hundreds of deployed satellites.

To remedy this error, we argue that these finite-size corrections will predominantly
appear in one of the parameters of the class of generalized gamma distributions.
Furthermore, we estimate this parameter numerically and provide a simple empirical
formula that captures these corrections in the studied regime.

As one can see in Figure 4.3, empirical distributions obtained via simulation are
qualitatively similar to the ones obtained in the previous section, but there is a
significant quantitative disagreement.
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Figure 4.3: Comparison of the simulated transmission cost histograms with the generalized
gamma distribution; (a) with and (b) without finite- size corrections, for n = 600 and k = 5.

By examining the parametrization of the distributions obtained in the previous
section, it is intuitive that the finite-size corrections have to be applied predominantly
to the parameter a, since it reflects the intensity of the considered PPP. In the case
of configurations with a low number of satellites, one could argue that each of the
satellites has a different effective intensity of the Poisson random variable describing its
neighbourhood. While a direct symbolic computation seems infeasible, it is possible to
estimate the parameter a (and hence also the effective intensity) by fitting the family
of generalized gamma distribution with all parameters except for a fixed to values
obtained in Section 4.2.3, and estimating the parameter a. This way, we obtain a
correction in the form

Georr = (0.685 4 0.002)n,~0-73+0-01, (4.11)

which is valid in the regime of n € [100,1,000], k € {4,5,6}. By comparing generalized
gamma distributions with acor as the scale parameter with empirical distributions
obtained from simulations (see Figure 4.3), we see that this simple correction leads to
much better approximation of empirical results.

§4.3 Applications to computation allocation

§4.3.1 Cross-correlations in the LSCC

In this section, we describe an algorithm to divide the computation of the cross-
correlations of the satellites in the largest strongly connected component (LSCC). First,
we investigate how the satellites can decide whether they are in the LSCC. After this,
we determine how the satellites can divide the computations of the cross-correlations.
Due to the choice of k in our k-NN graph, the LSCC contains at least 95% of the
satellites.

By the definition of a strongly connected component, all the satellites in the LSCC
have the same satellites in their in-component, and thus have the same in-component
sizes. The satellites outside the LSCC will either have more satellites in their in-
component compared to the LSCC in-component (for those in the out-component
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of the LSCC) or much less (less than 5%). When they are in the out-component
of the LSCC, their in-component is strictly larger than the LSCC. Otherwise, their
in-component will be at most the complement of the LSCC. Thus, the mode of the
in-component sizes (the one with the highest frequency) can be used to identify which
satellites are in the LSCC. Based on their in-component sizes, each of the satellites
can thus be classified into three types:

(a) Satellites in the LSCC: These are the satellites whose in-component size equals
the mode of the in-component sizes.

(b) Satellites in out-component of the LSCC minus the LSCC: These are
satellites whose in-component size is strictly larger than this mode.

(¢) Other satellites: The size of in-component is less than 5%.

When the LSCC is large, the satellites of the type 1 and 2 are the most significant,
as they have the most data. We perform the cross-correlations between all pairs of
these satellites. The number of satellites of type 2 and 3 is at most 5% of the total
satellites because they lie outside the LSCC.

After identifying the LSCC, we next investigate how to assign the cross-correlation
computations optimally to the satellites, by proposing a strategy based on the energy
distribution of the satellites. For this, we label the satellites.

The idea is that each satellite will communicate their energy surplus and their
labels to the other satellites. Based on this information, the first labelled satellite gets
the first few cross-correlations, the second labelled satellite gets the cross-correlations
after the point where the first satellite finished, etc.

We denote the LSCC by C(;). We write the labels of the satellites in the LSCC
as {1,2,...,m}, where m = |C()|. We let the surplus energy of the ith satellite be
E; = Eyax — P, where Ep,.x is the initial energy given to each satellite and P; is the
power needed by the ith satellite to communicate to its k nearest neighbours.

We denote the out-component and in-component of the LSCC by C(J;) and C(w

respectively. We index the set of all M = (‘Cgﬂ l) cross-correlation pairs lexicographically
as

C = {617627...,61\/[}.

Each element of C' is an ordered pair denoting a cross-correlation. In the LSCC, we
compute these cross-correlations in ascending order. The satellite with the smallest
label in the LSCC does the initial cross-correlations with all its residual energy. The
second smallest labelled satellite now performs the cross-correlations from where the
first satellite left, and so on. Each satellite computes with all its residual energy.

In more detail, we assign the first | F'1 | cross-correlations, that is, {c1,ca,...,¢c|p, )}
to the satellite with label 1. Satellite 2 performs the next | F | cross-correlations, that is,
{CLE1J+1» el CLE1J+LE2J} and so on. This goes on until either all the cross-correlations
are computed, or all satellites have done their computations.

When there is surplus energy remaining after the cross-correlations between the
satellites in the in-component of the LSCC have all been computed, we use the surplus
energy of the satellites in the out-component to compute their cross-correlations with
the satellites in the LSCC’s in-component. We write the labels for the satellites in the

120



§4.3. Applications to computation allocation

out-component of LSCC minus LSCC as {m + 1,m +2,...,l}, where [ = |C Then

the total coverage of the cross-correlations T'(n) satisfies

l _
_ z(f B3] A ('C;U'), (4.12)

and the proportion of cross-correlations « satisfies

(1)‘

‘Cu) (IC(I)\)

:— . 4.13
Z ®) -

4\ " Y? 3k 3
P~ ol 4.14
GG(( w5 (4.14)

where GG(a,d, p) is the generalised gamma distribution with density given by (4.7).
Since the empirical distribution of the transmission costs converges, for large n, we

cr c\°
o 2E[ ] X | (1)| A <| (1)|> , (4.15)

By Section 4.2.3,

expect that

n n n

where F has the same probability distribution as E; = max{Fn.x — P;, 0}, given by

—-2/3
d 4mn 3k 3
LB = max ' 7 o ) 4.1
' ( GG<< 3 ) 2 2>>+ ( 6)

where x4 = max{z, 0}.
We can rewrite (4.15) as
2E[E
azn_kL/\n%, (4.17)
n

where 74 and 7_ are the proportions of satellites in the out- and in-component of the
LSCC, respectively. This gives us our final formula for the total proportion of cross-
correlations that can be computed in our communication and computation network,
and is the main performance parameter of our system.

§4.3.2 Simulation study of cross-correlation coverage

To study the cross-correlation coverage in the k-NN network, and to demonstrate the
utility of results derived in Sections 4.2, we simulated the following scenario:

(a) Initially, all the n satellites are assigned an energy budget Fnax = qaa(p), where
gac(p) is the quantile function of the density in (4.9) in Section 4.2.3 with
finite-size correction described in Section 4.2.4, and p is a simulation parameter.

(b) We establish a pruned k-NN communication network, which is created from k-NN
graph between the satellites, with edges removed when their existence causes the
satellite’s power consumption to exceed the energy budget Ep,.x. We iteratively
remove the most energetically expensive edges, until the edges no longer deplete
the power budget.
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(¢) We set the energy per one cross-correlation computation as in (4.1), and assign
computation jobs as described in Section 4.3.1.

The choice of E.x and 8 strongly influences the outcome of the simulation. For
large n, one needs to choose F,.x unrealistically large to avoid all pruning. Thus,
the quantile function gga(p) allows us to pick Fyax in a way that will very probably
induce network pruning. The intensity of this effect can be effectively controlled by
the parameter p (where we note that pruning is independent of 8). The parameter
B influences the intensity of competition for energy between the transmission and
computational functions of satellites.

In our simulations, we focus on three quantities:

. __ |LSCC post-pruning]
(a) LSCC reduction factor pr, = T5CC pro-praming|

__ |jobs assigned within LSCC]|
(b) LSCC coverage factor az, = |jobs available within LSCC|?’

__ ]jobs assigned within LSCC]|
" |jobs available within swarm| "

Our results indicate that these 3 quantities are highly sensitive to the choice of
parameters, with some regimes exhibiting results concentrated in a small interval and
others dominated by inherent randomness. Some of these results are shown below, see
Figures 4.4, 4.5 and 4.6. For a more detailed discussion, see Appendix C.

(¢) Coverage factor a

Foo £
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(a) p=0.1 (b) p=0.3

(d) p = 0.99 (d) p=0.99
Figure 4.4: Examples of observed values Figure 4.5: Examples of observed values
of the LSCC reduction factor pr, fork =5, of the LSCC coverage factor ar, for k =5,
n € (100,1000), p varying. p, B varying.

In engineering terms, the results lead to an algorithm for the parameter choices.
We assume that n, the size of the satellite swarm, is known. We pick k such that
the LSCC is sufficiently large. For k& = 5, the LSCC contains at least 95% of the
vertices, while it is at least 98% for k = 6. With this k&, we can then compute the power
distributions over the swarm (including finite-size corrections). Further, the value of
the computation cost ¢ (in this study rescaled to be 1) fixes the product SE,.x through
(4.1). In turn, a value of En,y directly translates into a value of p through the relation
Emax = qcc(p), where gae(p) is the quantile function associated to the density in
(4.9). We then need to choose the pair 8 and p such that the desired coverage « is
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(a) p=10.1, =0.1 (b)) p=0.1, 3=1.0 (¢)p=0.3,8=0.1 (d) p=03,=1.0

(e) p=0.7, 5 =0.1 (f)p=07,8=1.0 (9) p=10.99, B =0.4 (h) p=10.99, 5 =1.0

Figure 4.6: Examples of observed values of the LSCC coverage factor ar for k =5, p,[3
varying.

reached. Our analysis provides insight into the relation between the performance «
and these parameters.

§4.4 Conclusion and future work

We proposed a communication protocol for satellites, in which satellites choose their
power so that they can communicate with their & nearest neighbours. Already for
k =5, the largest strongly connected component (LSCC) contains more than 95% of
the satellites, thus ensuring sufficient coverage of the baselines needed. We computed
the asymptotic distribution of the powers needed by the swarm of satellites, which
is described by a generalized gamma distribution. This approximation follows by
describing the local neighbourhoods of satellites in terms of a homogeneous Poisson
process. Simulations confirm that this approximation already holds reasonably well,
even when only a few hundred of satellites are considered after applying an appropriate
finite-size corrections.

Based on the approximation of the communication costs, we proposed an algorithm
to guarantee that a large proportion of cross-correlations is computed. This algorithm
relied on the assumption that all satellites have access to all signals in the strongly
connected component. We computed the coverage of the cross-correlations that can be
computed under the assumption that the total computation costs are a proportion
of the total energy available to the satellites.

Some extensions of our work, for future research, are as follows:

(a) We compute the power that satellites need to communicate with their k nearest-
neighbour satellites, Should the satellites be able to signal that they are not in
the SCC, then they could increase their power so that they connect to more
servers. While this increases their power level, this enhances connectivity. Since
the satellites outside the (in-component of) the SCC are not heard at all, it may
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be worth for them to raise their power. Unfortunately, this does not help the
satellites in the out-component of the SCC (as they hear all the signals in the
SCC), but it may help satellites that are even outside of that.

(b) What buffer allocation is needed in order for all (g) cross-correlated pairs to

be computed with high probability? Determining this threshold is probably
mathematically challenging.
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C. Appendices of Chapter 4

The following contains a more detailed discussion of some of our results and
additional plots omitted from Chapter 4.

§C.1 Scatter plots of longest baselines

In Section 4.2.2 we have shown the scatter plots of the observed longest baselines for
k = 5. Here we present scatter plots for all £ =4,5,6.
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(a) k=4 (b) k=5 (c) k=6

Figure C.1: Scatter plot of lengths of longest baselines for n = 100 — 1000, k = {4,5,6}.

§C.2 Histograms of empirical distributions of base-
line lengths

In Figures C.2, C.3, C.4 we show histograms of empirical distributions of baseline
lengths omitted from Section 4.2.2.

§C.3 Simulation study of cross-correlation coverage

§C.3.1 Introduction and setting

This section contains a more detailed discussion of the simulations presented in Sec-
tion 4.2. For the reader’s convenience, we first recall the setting of our simulation
experiment. We are interested in the behaviour of an idealized model of the commu-
nication network within a swarm of satellites acting as a space-based interferometer.
This network is generated based on a k-NN graph between the individual satellites.
More concretely, the network is created as follows:

(a) Initially, all the n satellites are assigned an energy budget Enax = ¢aa(p), where
gca(p) is the quantile function associated with the distribution function identified
in Section 4.2.3 with finite-size correction described in Section 4.2.4 and p is a
parameter of the simulation.

(b) We establish a pruned k-NN communication network, which is created from k-NN
graph between the satellites, with edges removed when their existence causes the
satellite’s power consumption to exceed the energy budget E\,.x. We iteratively
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(¢) n =150

(d) n =200 (e) n =300 (f) n = 400

(g) n =500 (h) n =600 (i) n =700

(i) n = 800 (k) n. = 900 (1) n = 1000

Figure C.2: Histograms of the empirical densities of baseline lengths for various n and k = 4.
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(d) n = 200 (f) n = 400

(g) n = 500 (h) n. = 600

(j) n = 800 (k) n = 900 (1) n = 1000

Figure C.3: Histograms of the empirical densities of baseline lengths for various n and k = 5.
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(b) n =100 (¢) n =150

(d) n =200 (e) n =300 (f) n = 400

(g) n =500 (h) n =600 (i) n =700

(i) n = 800 (k) n. = 900 (1) n = 1000

Figure C.4: Histograms of the empirical densities of baseline lengths for various n and k = 6.
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remove the most energetically expensive edge, until the edges no longer deplete
the power budget.

(c) We set the energy per one cross-correlation computation as in Eq. 4.1 and assign
computation jobs as described in Section 4.2.1.

For a more detailed discussion of the setting and motivation of our study, we refer
the reader back to Chapter 4.

The choice of Eax and 8 strongly influences the outcome of the simulation. Since
we aim to explore disconnected networks, the quantile function gg¢(p) allows us to pick
Enax in a way that will very probably induce network pruning and the intensity of this
effect can be easily controlled by the parameter p (note that pruning is independent
of 8). The parameter 8 influences the intensity of competition for energy between
transmission and computational functions of satellites.

In our simulations, we focus on three quantitative indicators:

. __ |LSCC post-pruning|
(a) LSCC reduction factor py, = 500 propraning

__ |jobs assigned within LSCC]|
(b) LSCC coverage factor oy, = |jobs available within LSCC]|?’

__ |jobs assigned within LSCC]|

(C) Coverage factor v = |jobs available within swarm]|*

In this document, we present a more detailed account of our results and discuss the
influence of various parameters on the aforementioned quantities.

§C.3.2 Largest strongly connected component reduction factor

Firstly, note that the LSCC reduction factor py is independent of the parameter 3,
since the energy costs of initialisation and maintenance of the communication network
are, in our model, given preference to those related to computation. In other words,
the primary aim of every satellite is to establish its £-NN communication network, not
to conserve power for possible computations.

In Sections 4.2.3 and 4.2.4, we identified a closed-form expression for the probability
distribution that is a good approximation of communication costs in the k-NN network.
We use the quantile function qaa(p) : (0,1) — R™T associated to this distribution (that
is, the inverse of the cumulative distribution function) to set the parameter Fy,.x that
corresponds to the power budget of a single satellite. As one would expect, the pruning
has a more pronounced effect when p is small. In this setting, the results also show
significant random fluctuations. As the parameter p increases, the LSCC reduction
factor py, is being pushed towards 1 (which would correspond to no reduction in the
size of the LSCC) and results start to concentrate in the neighbourhood of 1.

We would also like to point out the effect of parameters n and k. As we have seen
throughout the main paper, the randomness in the network is more significant in the
regime of small n. Similarly, networks with higher values of the parameter k seem
more robust, due to the presence of additional edges.

Some of our results are summarised in Figures C.5, C.6 and C.7.
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§C.3.3 Largest strongly connected component coverage factor

The LSCC coverage factor aj, being a quantity related both to the size of the commu-
nication network and the allocation of computation jobs, depends on all the parameters
E.x (or alternatively p), 8, n and k.

The behaviour of aj might be slightly misleading. For example, for p = 0.1,
k =4, and 8 low enough (see Figure C.8a), ay, is concentrated at the value 1. When
interpreting these results, one must realise that this is because the LSCC itself is rather
small, and therefore the assignment of all the jobs available within the LSCC, which
are furthermore energetically cheap due to 8 being small, is almost trivial. If § is close
to one, then even on a small LSCC there might not be enough energy to carry out
all the computational jobs. As p becomes slightly larger, the results are quite spread
out and the influence of 8 becomes significant. Finally, as p becomes closer to 1, 8
becomes the main controlling parameter.

Some of our results are plotted in Figures C.8, C.9 and C.10.

§C.3.4 Coverage factor

Unlike the LSCC coverage factor a,, the (global) coverage factor « is easy to interpret.
The coverage « increases with p and decreases with (3, in line with intuitive expectations.
Regimes of intermediate 5 and p can roughly be divided into 2 classes: regimes where
the coverage a concentrates around some intermediate value and regimes dominated
by inherent randomness, with values of « significantly spread out.

A somewhat counterintuitive phenomenon in the data is that for small values of p
and n, the coverage is higher than naively expected. This is mostly due to the network
being small, and corresponds to the similarly counterintuitive behaviour of a;y, in this
parameter regime explained in the previous section.

These results are illustrated in Figures C.11, C.12 and C.13.

§C.3.5 Additional plots

Additional plots are available via DOI:10.5281/zenodo.8433181.
The naming scheme of the files is as follows:

fig_{descriptor}_{k}_{p}_{betal}.pdf

where {descriptor} can be fracLSCC for plots related to LSCC reduction parameter
pr, coverLSCC for LSSC coverage o, and coverALL for coverage parameter «. The
placeholder {k} corresponds to the value of k£ chosen in the simulation, p denotes
the chosen value of p and {beta} denotes the chosen value of 5. For pr, which is
independent of 8, the naming convention uses 5 = 1.

For example, fig_coverALL_5-0.980-0.700.pdf corresponds to the plot of the
coverage parameter « for networks with £k =5, p = 0.98 and 8 = 0.7.
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CHAPTER

Bringing order
to network centrality measures

This chapter is based on the following article:

G. Exarchakos, R. van der Hofstad, O. Nagy, and M. Pandey. Bringing order to network
centrality measures. Work in progress, 2024+-.

Abstract

We introduce a quantitative method to compare arbitrary pairs of graph centrality measures,
based on the ordering of vertices induced by them. The proposed method is conceptually
simple, mathematically elegant, and allows for a quantitative restatement of many conjectures
that were previously cumbersome to formalise. Moreover, it produces an approximation
scheme useful for network scientists. We explore some of these use cases and formulate new
conjectures that are of independent interest.



CHAPTER 5

5. Bringing order to network centralities

§5.1 Introduction

The importance of centrality measures in network science is similar to the importance
of derivatives or integrals in calculus. While both concepts are intuitively clear to
practitioners, they both defy a single universally applicable mathematical definition.
The case of centrality measures is arguably less straightforward, since there are many
reasonable centrality measures that capture different aspects of what “being central”
can mean in a network. To illustrate this point, the database [85] currently lists more
than 400 centrality measures, each motivated by a different use case. Unfortunately,
there are usually no tractable relations between them. We refer to [114, Chapter 7] for
a comprehensive overview of centrality measures.

While there are some more light-hearted uses of centrality measures (e.g., the Kevin
Bacon game [60, 140] is related to closeness centrality, similarly the Erdés number
[70] measure centrality in the collaboration network in mathematics), they have also
been a subject of intense research across disciplines. The PageRank centrality measure,
introduced in [122, 40], is said to follow the PageRank power-law hypothesis, which
states that the in-degree and the PageRank follow the same power-law distribution in
major real-world networks. Surprisingly, while often true, this hypothesis was recently
disproved for directed Preferential Attachment model [17].

There is not much research on the relations between various centrality measures.
In [54], an analytic derivation is given that relates closeness and degree centrality
for undirected configuration models. Though in centrality measures, we are majorly
concerned with the induced rankings rather than the exact formula, it suggests that
the inverse of closeness centrality of a vertex is linearly dependent on the logarithm
of its degree. The dependence of PageRank on the damping factor is studied in [33].
Comparisons of centrality measures appear in [108, 145, 65, 64, 39], often aiming to
investigate which centrality measures outperform the others in a specific task. For
example, [108] studies the effect of removal of top-ranked vertices according to various
centrality measures on network connectivity, thus comparing centrality measures on
their ability to identify connectivity hubs in real-world networks. Likewise, [39] compares
the performance of various centrality measures in the specific task of keyword extraction
from scientific articles. General comparisons of arbitrary centrality measures without
any reference to a specific task are virtually non-existent, barring studies of correlations
between centrality measures [65]. On a related note, there have been attempts to
cluster centrality measures according to some similarities in their behaviour [134],
but this clustering is mostly heuristic and does not reflect any quantifiable clustering
criteria.

This chapter aims to bring order to centrality measures by proposing a quantitative
method to compare arbitrary pairs of centrality measures defined on the same graph. Our
method is based on the vertez-ordering induced by the centrality measures. Intuitively,
it captures the disagreement between the collections of top-ranked vertices for two
different centrality measures. This comparison scheme readily admits both practical
and theoretical uses. Apart from the obvious approximation scheme, this method
also allows us to put some previously stated informal and qualitative conjectures on
solid footing, and to formulate a set of new conjectures, hinting at a more profound
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relationship between various centrality measures. We achieve this by the centrality
comparison curve, that we explain next.

§5.2 The centrality comparison curve

Let G = (Vg, Eg) be a graph with vertex set Vi and edge set Eg. A centrality
measure is a map R: Vg — R such that R(v) > R(u) should be interpreted as meaning
that v is more central than w. For simplicity, from now on we will assume that
Ve ={1,...,n} =[n].

We can see R as a naive way to order the vertices in Viz. For our purposes, we need
to refine this ordering so that it becomes total and it breaks ties consistently. To this
end, we introduce the induced ordering.

Definition 5.2.1 (Induced vertex ordering). Fix a graph G, and let R, S be two
centrality measures on G. Endow each vertex v € Vi with a number u, sampled from
the standard Unif(0, 1) distribution. For any a,b € Vg, define the total ordering < (g, g)
via the following procedure:

(a) If R(a) < R(b) then a <(g,g) b.
(b) If R(a) = R(b) and S(a) < S(b), then a <(g,g) b.

(c) If R(a) = R(b) and S(a) = S(b) and u, < up,
then a <(g,s) b.
|

Note that <(g g) is different from <(g ry. The tie-breaker rule in Definition 5.2.1
can be slightly modified, see below for the consequences of this.

The above total ordering allows us to define the main contribution of this chapter,
the Centrality Comparison Curve:

Definition 5.2.2 (Centrality comparison curve). Fix a graph G with n vertices,
take any two centrality measures R, .S defined over G and consider the induced orderings
=(Rr,s)> =(s,r)- For any total ordering < of Vg, denote by Top_ (Vg,[) the first
elements in the ordered set (Vg, <).

The centrality comparison curve (CCC) on a graph of size |Vg| = n is a mapping
CCC%S: (0,1] — [n]/n defined by

RN . R b SN ORE] o

In words, CCC% 5(k/n) represents the overlap of the k most central vertices according
to two centrality measures, normalised by the size of the graph. |

We next remark on the elegant properties that CCC has.
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Lemma 5.2.3 (Basic properties of CCC).

(a) For any graph G and any two centrality measures R, S defined on G, and for any
x €[0,1],

CCCGg(z) <a (5.2)

(b) Let ¢ : R — R be a strictly monotone function. Then, for any graph G and any
centrality measures R, S defined on G, and for any x € [0, 1],

CCC%,S(x) = CccgoR,¢oS(x)7 (53)
where o R : Vg — R is the composition of maps ¢ and R, likewise for ¢ o S.

Proof.

(a) Since
Top~ . 5, ([n], [an]) | < @n, (5.4)

then also

[Top—,, o, ([n): lzn)) N Top _ ,, (n]. [#n]) | < on. (5.5)

which, combined with (5.1), yields the claim.

(b) Since strictly monotone functions are order-preserving, ¢ o R and ¢ o S produce
the same induced vertex ordering (recall Definition 5.2.1) as R and S. The claim
follows immediately.

O

The following lemma allows us to capture what it means for two centrality measures
to be independent of each other.

Lemma 5.2.4 (Comparison with ordering chosen u.a.r.). Let (<2, <Y)% | be a
sequence such that, for every n € N:
(a) <2 is a fized, but arbitrary, total ordering of [n).
(b) <Y is a total ordering of [n] chosen u.a.r., independently of anything else.
Then for any n € N and any k <n,k € N:
k2

E [[Top_s ([, k) N Top_y ([l k)] = = (5.6)

Proof. Note that Top_a ([n], k) contains k elements by definition. For every i €
Top_a ([n], k), it is true that

P (z € Top_u ([n], k)) - % (5.7)
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since <V is an ordering chosen independently uniformly at random from all orderings
of [n]. Therefore, it follows that

B [[Top (1) 1) N Top_y (ol 1) [] = 3" = = = (58)

which is the desired claim. O

Remark 5.2.5. In the setting of Lemma 5.2.4, by taking k = an, x € [0, 1], it follows
that

E |CCCC

Zh o(@)| = z? as n — 0o, (5.9)
where <2, <U are now seen as centrality measures implied by the ordering of the
vertex label-set [n] of the graph G,,. We believe that it is possible to strengthen this
statement to process convergence of (CCC§5,<E (2))efo.1] t0 (22)seio,1], but we will
not investigate these convergence properties further in this chapter.

¢
Motivated by Lemma 5.2.4, we introduce the following definition.

Definition 5.2.6 (s-independent centrality measures). Fix € € [0, 1], let G be
a graph and let R, S be two centrality measures defined on G. The pair of centrality
measures R, S is e-independent, if for every = € [0, 1]:

CCCH 5(x) € (27 —,27 + ). (5.10)
|

Lemma 5.2.3 and Remark 5.2.5 give rise to a natural comparison: If CCC%S is
close to the identity graph, R, .S induce very similar rankings, while these rankings are
fully independent if they are close to z2. Finally, CCCg, ¢ makes no assumption about
the edge density of the graph; hence it works for both sparse and dense graphs, as well
as directed and undirected graphs.

In some applications, it is only relevant to what extent the two centrality measures
agree on what are is the set of, say, top 10% of vertices. For these purposes, we
introduce a simple scalar quantity derived off CCC.

cccs
cCeofsfp) = =), (5.11)

which, for p small, can be seen as an approximation of the right-derivative at x = 0.

Informally, one can expect roughly nCCCog g(k/n) of the k most highly ranked vertices

for R to also be in the k most highly ranked vertices for S. For example, CCCO% 5(0.05)
measures how well the centrality measures R, S agree w.r.t. the top 5% of most central
vertices. The closer it is to 1, the better they agree.
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§5.3 Putting CCC to practice

We use CCC on artificial and real-world directed networks to see which centrality
measures are alike. For the artificial network, we use a directed configuration model
[35, 110] of size n = 1,000, with in- and out-degree power-law exponent 3. We run
this computation several times with different samples of the configuration model, and
the red error bars indicate the standard deviation around the mean of the 50 runs.
The real-world network is the directed “hep-ph” citation network [100]. Further details
about these computations can be found in Appendix D.

We will explain the plots of CCCs on the example of PageRank and in-/out-degree.

pagerank vs. indegree
Runs:1, graph size: 34546, all vertices
cit-hepph

0.868407 -

0.723673 A &

0.578938 - e

0.434204 A s

0.289469 e

0.144735 4 g

0 T T T T T T
0 0.144735 0.289469 0.434204 0.578938 0.723673 0.868407

Figure 5.1: CCC for PageRank and in-degree for the citation network [99]
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pagerank vs. outdegree
Runs:1, graph size: 34546, all vertices
cit-hepph

0.868407 -

0.723673

0.578938 -

0.434204

0.289469 -

0.144735 A

0

0.144735 0.289469 0.434204 0.578938 0.723673 0.868407

Figure 5.2: CCC for out-degree and PageRank for the citation network [99]

Mustrative example. Figures 5.1-5.2 show that in the real-world citation network,

PageRank is close to in-degree, and essentially independent of out-degree. The first
conclusion follows from the fact that the blue CCC is close to the dashed identity
curve in Figure 5.1, while the other follows since the CCC in Figure 5.2 follows almost

perfectly the yellow x

closeness vs. harmonic
Runs:1, graph size: 34546, all vertices

2 curve.

closeness vs. harmonic

cit-hepph

Runs:50, graph size: 10000, all vertices
directed-CM-"inPL_exp":3.0-"outPL_exp":3.0

0.868407 4

0.723673 1

0.578938 -

0.434204 1

0.289469 1

0.144735 1

0.8

0.6

0.4

0.2

0
0

0.144735 0.289469 0.434204 0.578938 0.723673 0.868407 0 0.2 0.4 0.6

0.8 1

Figure 5.3: CCC for closeness and harmonic centrality, for the citation network and artificial

network.

Closeness and harmonic centrality are similar. As can be expected, due to the close

relation in their definition, closeness and harmonic centrality are often close (see
Figure 5.3). A similar relation holds between betweenness and load centrality (see
Figure 5.4).
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betweenness vs. load
Runs:1, graph size: 34546, all vertices

betweenness vs. load
Runs:50, graph size: 10000, all vertices

cit-hepph 1 directed-CM-"inPL_exp":3.0-"outPL_exp":3.0
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0 0.144735 0.289469 0.434204 0.578938 0.723673 0.868407 0 0.2 0.4 0.6 0.8 1

Figure 5.4: CCC for betweenness and load centrality, for the citation network and artificial
network.

pagerank vs. indegree
Runs:1, graph size: 34546, all vertices

pagerank vs. indegree
Runs:50, graph size: 10000, all vertices

cit-hepph . directed-CM-"inPL_exp":3.0-"outPL_exp":3.0
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Figure 5.5: CCC for PageRank and degree, for the citation network and artificial network.

PageRank follows in-degree. While in-degree centrality is simply the in-degree of any
given vertex, PageRank is a more involved stochastic process originally used for ranking
pages in Google search results [122]. There is a large body of work showing that the
PageRank distribution has the same power-law exponent as the in-degree distribution,
see [63] and references therein. As a result, unsurprisingly, the CCC curve for these
centralities is close to a straight line (see Figure 5.5).

PageRank hardly depends on damping factor. PageRank centrality has a parameter,
called the damping factor, that is often taken as 0.85 [122]. However, the precise choice
of the damping factor does not significantly matter, as can be seen in Figure 5.6.
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1000

pagerank-50 vs. pagerank-90
Runs:200, graph size: 1000, all vertices
configuration-model-"power_law_exp":3.0

8001
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pagerank-30 vs. pagerank-90
Runs:200, graph size: 1000, all vertices
configuration-model-"power_law_exp":3.0

800

600

200

200 400 600 800 1000

Figure 5.6: CCC for PageRank with damping factors 0.5 and 0.9, and 0.3 and 0.9, respectively,
for artificial network.

betweenness vs. degree
Runs:1, graph size: 34546, all vertices
cit-hepph
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0.289469 1

0.144735

0
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betweenness vs. degree
Runs:50, graph size: 10000, all vertices

directed-CM-"inPL_exp":3.0-"outPL_exp":3.0

0.8

0.6

0.4

0.2

Figure 5.7: CCC for betweenness and degree, for the citation network and artificial network.

Betweenness and degree agree on top vertices. Betweenness and degree are obviously

quite different. However, the top-ranked vertices have a high overlap for the configura-
tion model, but not for the collaboration graph (see Figure 5.7).

katz vs. pagerank
Runs:1, graph size: 34546, all vertices
cit-hepph
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0.723673
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pagerank vs. katz
Runs:50, graph size: 10000, all vertices
directed-CM-"inPL_exp":3.0-"outPL_exp":3.0

Figure 5.8: CCC for PageRank and Katz, for the citation network and artificial network.
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PageRank is very different from Katz. Surprisingly, even though the definitions of
PageRank centrality and Katz centrality are highly similar, their centralities behave
quite differently (see Figure 5.8).

closeness vs. indegree closeness vs. indegree
Runs:1, graph size: 34546, all vertices Runs:50, graph size: 10000, all vertices
cit-hepph 1 directed-CM-"inPL_exp":3.0-"outPL_exp":3.0
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Figure 5.9: CCC for closeness and in-degree, for the citation network and artificial network.

Closeness and in-degree are weakly related. In the directed configuration model, close-
ness and in-degree are somewhat related (see Figure 5.9).

closeness vs. degree closeness vs. degree
Runs:1, graph size: 4158, all vertices Runs:50, graph size: 1000, all vertices
coll-grqc- 1000 configuration-model-power_law_exp:3.0-
4000 4 -
-
/”,
3500 4 e
e 800
3000 4 xas
e 4
e -
2500 4 e 600 4
. 5
e Py
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2000 4 e -
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e 400 e
1500 4 P pre
r’/’ /’//
1000 4 L e
e 200 e
/” ,r’
500 L .
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0 - v T v T v T v 0 T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 0 200 400 600 800 1000

Figure 5.10: CCC for closeness and degree, for undirected collaboration network and artificial
network.

Closeness and degree are different in undirected setting. In the configuration model,
surprisingly, closeness and degree are quite different (see Figure 5.10), unlike what
was reported in [54]. We refer to Appendix D for scatter plot of closeness and degree,
which does show that there is some weak relation, which is, however, not obviously
reflected in the CCC.

Local centrality measures. For PageRank, it is known that it is a local quantity, in that
it can be well-approximated by its finite power iteration [63]. Obviously also in-degree,
out-degree and degree centrality are local, and due to its definition, one can also expect
Katz centrality to be a local measure. For local centrality measures, one can show
that the CCC converges to a limiting continuous curve [56], that can be determined
by the local limit of the graph. Local convergence, and locally tree-like behaviour,
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have become central techniques in network science. However, it is not true that local
measures are all alike (see, for example, Figure 5.8), even though their relations can be
analysed through the local limit.

§5.4 Conclusions & conjectures

Centrality measures have been so far compared by computing the correlation between
centralities. However, correlation captures only a linear dependence, and it can vary
wildly when applying a monotone transformation. The advantage of the CCC is that
it is dnvariant under monotone transformations, and thus more robust.

As such, the CCC gives a quantitative way of comparing how close centrality
measures are, as well as the most central vertices in the network, or, alternatively,
how independent they are. We see that the CCC confirms that load centrality is
close to betweenness centrality, as well as closeness to harmonic centrality, as can be
expected from their definitions. Further, PageRank is close to in-degree centrality, and
is also hardly affected by the choice of damping factor. Remarkably, even though their
definitions are close, PageRank and Katz centrality behave rather differently.

Another obvious use of CCC is to identify replacements for hard-to-compute
centrality measures in cases when only the ranking of nodes is needed. For example,
ranking by closeness and harmonic centrality, or by betweenness and load centrality, is
identical in both artificial and real-world networks. Similarly, ranking by PageRank
can be well-approximated by the ranking obtained from in-degrees.

CCC is an interesting mathematical object. The plots presented above make it
plausible that the CCC, seen as a stochastic process, converges to a limiting process,
which in the setting explored herein might be a deterministic curve. Ideas along these
lines are formalised in [56], which provides an argument that CCC converges for local
centrality measures for a certain class of random graphs.
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Appendices of Chapter 5

§D.1 Definitions of centrality measures

As mentioned in the main text, centrality measures assign a number to every vertex
in a given graph; this number represents a particular notion of what centrality can
mean in different contexts. Formally, centrality measure R is a map R: Vg — R such
that R(v) > R(u) should be interpreted as meaning that v is more central than wu.
There are many centrality measures that have been considered in the literature. In
this paper, we consider in-degree, out-degree, total degree, PageRank, betweenness
centrality, closeness centrality, load centrality, harmonic centrality, Katz centrality.
Below, we present definitions of these centrality measures.
PageRank. Let R : Vg — R>0 be the PageRank function, then it satisfies the
following recursion
Ri)=¢ Y ZIR(G)+ (1 o), (D.1)

T
JjEVE d]

where ¢;; is the number of edges from j to ¢ in G, dj is the out-degree of j, and
c € (0,1) is the damping factor.

Katz centrality. Katz centrality, introduced by Leo Katz [91], is a centrality measure
defined as follows. Let K, : Vo — R>0 be the Katz centrality function, then

Ko(i) =YY ofAl, (D.2)

k>1j€EVa

where A is the adjacency matrix of G and « € (0,1) is the attenuation factor. Notice
that in order for the sum in (D.2) to converge, the value of the attenuation factor «
has to be chosen such that it is smaller than the reciprocal of the largest eigenvalue of
A (which is non-negative, due to the non-negativity of A).

Eigenvector centrality. Let z: Vg — R0 be the eigenvector centrality vector, then
it satisfies

' A =\, (D.3)

where A is the adjacency matrix of G and A is its associated largest modulus eigenvalue.
This eigenvector is unique up to a multiplicative factor. To define a unique score, one
must normalise the eigenvector.
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Betweenness centrality. Let b: Vg — R>0 be the betweenness centrality function,

then
) =3 %) "U” (D)

i€Vg jeVa >

where o; ;(v) counts the number of shortest paths from ¢ to j containing v and o; ; is
the number of shortest paths from ¢ to j.
Load centrality. Let I: Vg — R>0, the load centrality function, then

l(v) _ EiEVG ZjEVG Ui7j(v)
Zievc ZjEVG Oi,j
where o, ;(v) counts the number of shortest paths from ¢ to j containing v and o; ; is

the number of shortest paths from i to j.
Closeness centrality. Let c: Vg — R>0 be the closeness centrality function, then

(D.5)

Ve -1
W)= w7, (D.6)
ZuEVG dG (u’ U)
where dg(u,v) is the length of the shortest path between v and v in G.
Harmonic centrality. Let h: Vg — R be the harmonic centrality function, then

1
h(v) = ;} dow,0)’ (D.7)

where dg(u,v) is the length of the shortest path between u and v in G.

§D.2 Proof of properties of CCC and tie-breaking
rule

Here we comment on some properties of the CCC. First, the CCC is symmetric w.r.t.
the used centrality measures, since the definition (5.1) is symmetric.

We continue by discussing the tie-breaking rule. There are various possibilities
to break ties. We choose to break ties in one centrality measure as a function of the
other. That will make the CCC as close to the identity as possible. This is reflected
in the CCC for (in-)degree centralities (since there are many vertices with the same
(in-)degree, particularly for low (in-)degrees, so that the CCC is identical to a straight
line in the top-right corner. The centrality values of the most central vertices are
generally unique, so that the tie-breaking rule has no effect on the bottom-left part of
the CCC. Alternatively, we could break ties using a uniform variable associated to each
of the vertices, and then the top-right part of the CCCs will be much further from a
straight line (see Figure D.1).
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pagerank vs. degree
Runs:25, graph size: 500, all vertices
CM - exp 3

500

400 A

300 A

200 1

100 A

100 200 300 400 500

Figure D.1: PageRank vs. degree for an undirected configuration model with an alternative
tie-breaking rule. Compare with the plot on the right of Figure D.6.

Generally, we prefer the tie-breaking rule discussed in the main article, since this
makes the CCC easier to interpret.

§D.3 Details on the artificial networks used

The source code used to create plots in the main article is available on GitHub, via
https://github.com/nagyol/CCC-simulation. The program makes extensive use of
the NetworkX library [73].

In the case of (un-)directed configuration model with power-law degree sequence
with exponent «, the individual degrees are chosen to be

deg(v) = | (dmin +Y)],

where dpin, the lower-bound on degrees, is chosen to be 1, and Y is a Pareto(a — 1)-
distributed random variable, i.e., random variable with CDF

1-L z2>1
Fy(z) = e -
v () {0 otherwise.

In the case of the directed configuration model, first the in-degree sequence is

sampled via the procedure outlined above, and then the out-degree sequence is resampled
until it has the same sum as the in-degree sequence.
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§D.4 CCC for undirected graphs

In this section, we present the same figures as in the main text of the paper, but now
for real-world and artificial undirected networks. Also in such networks, centrality
measures are highly used and useful to identify important vertices in the network.
The real-world network consists of the collaboration network studied in [99], while the
artificial networks correspond to configuration models with power-law exponent 3.

pagerank vs. degree
Runs:1, graph size: 4158, all vertices
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Figure D.2: CCC for PageRank and degree for collaboration network [99]
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Figure D.3: CCC for eigenvector and PageRank, and degree and Katz centrality, respectively,

for collaboration network [99]
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closeness vs. harmonic
Runs:1, graph size: 4158, all vertices
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CCC for closeness and harmonic centrality, for collaboration network and artificial
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Figure D.5: CCC for betweenness and load centrality, for collaboration network and artificial

network.
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Figure D.6: CCC for PageRank and degree, for collaboration network and artificial network.
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pagerank-50 vs. pagerank-90
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Figure D.7: CCC for PageRank with damping factors 0.5 and 0.9, and 0.8 and 0.9, respectively,
for artificial network.
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Figure D.8: CCC for PageRank and Katz, for
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CHAPTER 6

6. Open problems and suggestions for future research

This chapter gives of a summary of possible further research directions along the
lines of the previous chapters.

§6.1 Ideas related to Chapter 2

Simple symmetric random walk. A natural extension of Chapter 2 would be
to consider the simple symmetric random walk in place of the non-backtracking one.
While the general idea of the framework presented therein is seemingly still useful, the
stopping time that implies that mixing has occurred must change. The reason the first
time that the random walk steps over a rewired edge cannot be the right candidate
is simple: without the non-backtracking property, the random walk can make a step
back and continue on what is essentially the initial graph. A possible candidate for
an alternative stopping time, denoted by Tc¢ang, is the first time that all the following
criteria are satisfied:

(a) The random walk has already stepped over a previously rewired edge. Let us call
the time when this happens 7 and denote the edge where this crossing happens
by e;. The reason for this criterion is to ensure that the random walk has had a
chance to observe a graph that is different from the initial graph.

(b) At least A steps have elapsed since 71, where the exact scaling of A is unclear,
but it is plausibly O(logn). This is required to allow the random walk to move
away from the edge e; that can send it back to the part of the graph that is
unchanged from the initial graph.

(c) The edge e; has been traversed an odd number of times in the time interval
[T1, Tcana]. This is needed for the random walk to make the uniform jump used in
the coupling construction. If the edge e; was traversed an even number of times,
then the random walk would still observe the initial graph.

The above heuristic candidate stopping time is much more complicated than the
stopping time used in Chapter 2 and computing its distribution might be cumbersome.

A different approach is to consider a simple symmetric random walk on a di-
rected graph, which, under some technical assumptions, essentially behaves like a
non-backtracking random walk. An example of this approach, albeit in a different
context, can be found in [8].

More general graph dynamics. Chapter 2 presents a general framework that
fits a large class of graph dynamics. Nevertheless, it is not difficult to think of graph
dynamics where the coupling argument would fail. Since one of the major components
in the argument is the uniform jump in the static geometry, it is possible to invalidate
this part of the construction by considering a dynamics that gives preferential treatment
to some small enough subset of “destination” half-edges. Perhaps coupling to a random
walk started from these preferred half-edges might be fruitful in this setting.
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§6.2. Ideas related to Chapter 3

§6.2 Ideas related to Chapter 3

Finite-speed random walk. It would be more natural to study a finite-speed
random walk instead of the infinite-speed random walk considered in Chapter 3.
Unfortunately, this setting appears to be extremely challenging. While it is possible
to argue about regimes where either the rate of the random walk or the rate of the
permutation dynamics dominates, the setting when these two rates are comparable is
rather opaque. The main problem, which is not present in the infinite-speed setting,
is that the random walk distribution need not mix on a permutation cycle before it
gets fragmented. At this moment, we do not even have a heuristic idea about how to
approach this problem.

Different stochastic processes. Dynamic permutations are an interesting example
of a dynamic geometry for stochastic processes. They represent a geometry that is
disconnected, but nevertheless allows for frequent merging and fragmentation of its
constituent components. It would be interesting to study the infinite-speed version of
the two-opinion voter model, which we explain next. Initially, assign every permutation
element a uniform opinion. After each step of the permutation dynamics, all the
elements on the same permutation cycle adopt the same opinion, namely, the majority
opinion on a given cycle. In case of an equal split, pick the opinion that will prevail
uniformly at random. It might be that some techniques used in Chapter 3 can be
adapted to this setting, especially the ideas about the recurrence of large cycles.

§6.3 Ideas related to Chapter 4

Dynamics of the swarm. In Chapter 4, we make the simplifying assumption
that the communication graph can be faithfully modelled by a static graph. While
this assumption is well-justified in certain scenarios, it is easy to think of situations
where it would simply be wrong. Therefore, a study of the dynamic situation would
be of considerable value. To the best of our knowledge, dynamic k-NN graphs are
an unexplored territory in the study of random graphs. Nevertheless, the results of
Chapter 4 are still useful if the stationary distribution of the dynamic communication
network coincides with the distribution of the static k~-NN graph studied therein.

From a different perspective, it is questionable whether the k-NN graph is even the
right choice for a satellite swarm in highly dynamic scenarios. It would be more natural
to consider dynamic random geometric graphs, which would correspond to satellites
with omnidirectional antennas and fixed transmission power.

Data flow modelling and dynamic optimisation. Another major simplification
in Chapter 4 is that we chose not to model the flow of data in the network. In real-
world satellite swarms, engineers have to consider data transmission problems, buffer
allocation and optimal data routing. Incorporating these would make our results more
valuable to the engineering community. Moreover, there might be further possibilities
for optimisation of the swarm. For example, satellites could decide to switch themselves
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off, or to reduce their transmission power, in cases when this would not influence the
read-out from the interferometer.

§6.4 Ideas related to Chapter 5

Limits of CCCs. Centrality comparison curves, seen as stochastic processes, seem
to often converge to some limiting process. While it makes little sense to discuss this
topic in full generality, we are hopeful that some convergence results can be proven for
specific classes of centrality measures on specific random graphs. Some work in this
direction is already underway (see [56]).
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Samenvatting

Samenvatting

Stel je een kopje warme thee voor, waar je wat melk in giet in. Aanvankelijk ziet de
vloeistof er misschien wat chaotisch uit, maar uiteindelijk wordt deze egaal van kleur.
Als we in het kopje zouden roeren, dan zou de uniforme bruine kleur zich nog sneller
ontwikkelen.

De concepten in de bovenstaande paragraaf reiken veel verder dan warme dranken.
Veel wanordelijke systemen vertonen ordelijk gedrag na verloop van tijd. Met andere
woorden, ze naderen een evenwicht. Net zoals de kleur van de drank kan worden
gebruikt om het mengen van thee en melk kwantitatief te beschrijven, zo zijn er
abstracte kwantitatieve methoden om te meten hoe ver een systeem van zijn evenwicht
verwijderd is. Een prominent voorbeeld voor zo'n methode is de totale variatieafstand.
Bovendien zullen we doorgaans een snellere vermenging waarnemen wanneer er een
externe dynamica wordt toegepast. Dit geldt zowel voor een kopje thee als voor
toevalswandelingen op dynamische toevallige grafen.

Het eerste wetenschappelijke hoofdstuk in dit proefschrift laat zien dat, voor niet-
teruggaande toevalswandelingen op toevallige grafen gegenereerd door het configuratie-
model met een herverbindingsdynamica, vermenging over het algemeen sneller optreedt
dan op de statische versie van de toevallige graaf. Daarnaast wordt een gedetailleerde
analyse van dit scenario gegeven en wordt aangetoond dat de eerder waargenomen
driedeling in het gedrag van de totale variatieafstand eigenlijk een ontaarde vorm van
een zesdeling is.

Het tweede wetenschappelijke hoofdstuk presenteert een nog extremer voorbeeld
van versnelde vermenging. De oneindig snelle toevalswandeling op een dynamische
toevallige permutatie zou nooit mengen zonder de invloed van de dynamica. In feite zou
deze altijd in de begintoestand blijven, ongeacht de verstreken tijd. Het samenvoegen en
splitsen van permutatie-cycli, veroorzaakt door de dynamica, stelt de toevalswandeling
in staat om zichzelf gelijkmatig te verdelen over alle elementen van de onderliggende
permutatie. Bovendien laat de totale variatieafstand een opvallend patroon zien: deze
blijft aanvankelijk zo ver mogelijk van het evenwicht, daalt na een toevallige tijd
plotseling, en volgt een deterministisch pad naar volledige vermenging.

Soms kan een zeer dynamische situatie worden gereduceerd tot zijn statische
tegenhanger. Dit is het centrale thema van het derde wetenschappelijke hoofdstuk,
waarin het communicatienetwerk binnen een satellietzwerm wordt onderzocht. Hoewel
de satellieten in werkelijkheid voortdurend op een complexe manier bewegen, is het
mogelijk om in plaats daarvan het statische netwerk te bestuderen dat ontstaat als
een langetermijngemiddelde. Dit hoofdstuk onderzoekt de prestaties van een dergelijk
netwerk en de energiekosten die nodig zijn om het te onderhouden.

Onderzoeksprojecten kunnen ook onverwachte bijproducten opleveren. Een dergelijk
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bijproduct van het satellietproject is een kwantitatieve methode voor het vergelijken
van willekeurige paren van centraliteitsmaten, gedefinieerd op dezelfde graaf. Dit
nieuwe wiskundige object wordt geintroduceerd in het vierde hoofdstuk, waarin ook
vele aantrekkelijke eigenschappen worden belicht en talrijke numerieke voorbeelden
worden gegeven.
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Summary

Summary

Imagine a cup of warm tea, and pour some milk into it. Initially, the liquid might
appear chaotic, but eventually it will become uniformly coloured. And, if we were to
stir the cup, then the uniform brown colour would develop even faster.

The concepts in the paragraph above extend far beyond the realm of hot beverages.
Many random systems exhibit orderly behaviour after a sufficiently large time. In
other words, they approach equilibrium. Just as the colour of the beverage can be used
to quantitatively describe the mixing of tea and milk, there are abstract quantitative
methods to measure how far a system is from its equilibrium. A prominent example
of such a method is the total variation distance. Moreover, if external dynamics are
applied, then we typically observe faster mixing. This is true both for a cup of tea and
for random walks on dynamic random graphs.

The first scientific chapter in this thesis shows that, for non-backtracking random
walks on the random graph generated by the configuration model with rewiring
dynamics, mixing generally occurs faster than it would on the static version of the
random graph. Additionally, this chapter provides a detailed analysis of this scenario
and reveals that the previously observed three-way split in the behaviour of the total
variation distance is actually a degenerate form of a six-way split.

The second scientific chapter presents an even more extreme example of accelerated
mixing. The infinite-speed random walk on a dynamic random permutation would never
mix without the influence of the dynamics. In fact, it would always remain in the initial
state, regardless of the time that has elapsed. The merging and splitting of permutation
cycles caused by the dynamics allow the random walk to evenly distribute itself across
all elements of the underlying permutation. Moreover, the total variation distance
illustrates a striking pattern: it initially stays as far from equilibrium as possible, then
after a random time suddenly drops, and subsequently follows a deterministic path
towards full mixing.

Occasionally, a highly dynamic situation can be reduced to its static counterpart.
This is the central theme of the third scientific chapter, which examines the communic-
ation network within a satellite swarm. While in reality the satellites are constantly
moving in a complex manner, it is possible instead to study the static network that
emerges as a long-term average. This chapter explores the performance of such a
network and the energy costs required to maintain it.

Research projects can also produce unexpected by-products. One such by-product of
the satellite project is a quantitative method for comparing arbitrary pairs of centrality
measures defined on the same graph. This new mathematical object is introduced in
the fourth chapter, which also highlights its many appealing properties and provides
numerous numerical examples.

186



Acknowledgements

Acknowledgements

Regulations command both brevity and restraint in these acknowledgments, which
therefore cannot capture my full gratitude to all those who left their mark on the time
of my doctoral studies.

Nevertheless, I want to use this opportunity to thank:

¢« Frank den Hollander, Remco van der Hofstad, and Luca Avena, for
being my supervisors and co-authors, for all our discussions, and for letting me
glimpse the life of a working mathematician at three different career stages.

I would like to especially thank Remco for nominating me for the MSRI Graduate
Summer School, which was one of the best experiences of my graduate studies.

¢ Dutch Research Council, for financing my doctoral research via the Gravitation
grant NETWORKS.

o Walter Jaffe, for all his advice that helped me navigate the peculiarities of the
academic life, for discussions about astronomy and interferometry (which found
an unexpected use in Chapter 4), for extending his professional network to me
at the end of my studies, and for providing me with a roof over my head after I
came to Leiden.

¢ Mark Bentum, George Exarchakos and Manish Pandey, for the work we
did together in the projects about satellite swarms and centrality measures.

¢ Camiel Koopmans, Daoyi Wang, Twan Koperberg, Federico Capannoli,
and Pierfrancesco Dionigi, for all the time spent together fighting problems
in probability theory and (un-)related fields. I especially thank Federico for
co-organising the iPOD seminar with me.

e My family, for their unwavering support during my studies and for their
encouragement when it was needed.

e And to all the other people who enabled me to carry out the research in this
dissertation.

There was more to the last couple of years than just work and research, and I was
fortunate to experience wonderful moments that had little to nothing to do with either.
While this is not an appropriate place to recount these, I am grateful to all the people
with whom I could share these moments.

187



Curriculum vitee

Curriculum vitee

Oliver Nagy was born in the summer of 1994 in Bratislava, Slovakia.

After graduating from Gymnézium M. R. Stefanika in Samorin, Slovakia, he started
his university studies at the Faculty of Mathematics and Physics of Charles University
in Prague, Czech Republic. There he was admitted to the degrees of bachelor (February
2017, General Physics) and master (February 2020, Theoretical Physics).

During his studies in Prague, he worked in the computer laboratories of his former
faculty and did an internship with an IT-focused start-up.

In February 2020, he started his PhD studies at the Mathematical Institute of Leiden
University, within the framework of the NETWORKS consortium. His employment at
the Mathematical Institute came to an end in April 2024, and this dissertation is one
of the fruits of this labour.

Oliver’s career continues outside of academia. After a brief stint as a quantitative
risk analyst at ABN AMRO, he began his training to become a patent attorney at the
Dutch branch of Kilburn & Strode. He maintains a connection to the mathematical
community through his role as a junior editor for Snapshots of Modern Mathematics
from Oberwolfach.

188



	Introduction
	Overview
	Brief introduction to the content
	Random walks and their mixing properties
	Random graphs
	Dynamic permutations
	Satellite interferometers and their communication network
	Network centrality measures

	Organisation of this dissertation

	Linking the mixing times of random walks on static and dynamic random graphs
	Introduction
	Model and notation
	Mixing for general rewiring mechanisms
	Application to specific rewiring mechanisms
	Discussion
	Previous work
	Outline

	Random graph dynamics and random walk
	Random graph dynamics
	Random walk
	Joint process

	Proof of the main theorem
	Regularity conditions
	Modified random walk
	Coupling of modified and dynamically rewired random walk
	Failures in the coupling
	Link between dynamic and static

	Applications of the general framework
	Three choices of rewiring
	Local-to-global rewiring
	Near-to-global rewiring
	Global-to-global rewiring


	Appendices of Chapter 2
	Irreducibility and aperiodicity of local-to-global dynamics
	Cut-off in the static setting
	Transition matrix for graph rewiring

	Mixing of fast random walks on dynamic random permutations
	Introduction and main results
	Target
	Background and earlier work
	Setting, definitions and notation
	Preliminaries for Erdős-Rényi random graphs
	Associated graph process
	Main results
	Discussion

	Coagulative dynamic permutations
	Representation via associated graph process
	Connected components of the cycle-free Erdős-Rényi graph process
	Drop-down time and mixing profile

	Coagulative-fragmentative dynamic permutations
	Drop-down time
	Drop-down in a single permutation cycle
	Local mixing upon drop-down
	Mixing profile


	Appendices of Chapter 3
	Infinite-speed random walk as limit of finite-speed random walk
	Normalisation of the jump-time distribution
	Cycle structure of coagulative-fragmentative dynamic permutations and Schramm's coupling
	Short summary of Schramm's coupling
	Recurrence of large cycles

	Mixing upon dropdown on the largest cycle
	Mixing in dynamic degree-two graphs
	Permutations and degree-two graphs
	Infinite-speed random walk mixing on degree-two graphs


	Communication protocol for a satellite-swarm interferometer
	Introduction
	Motivation and setting
	Modelling assumptions
	Previous works

	Communication network within the swarm
	Connectivity & strongly connected components
	Empirical distribution of baseline lengths
	Distribution function for communication costs
	Finite-size corrections

	Applications to computation allocation
	Cross-correlations in the LSCC
	Simulation study of cross-correlation coverage

	Conclusion and future work

	Appendices of Chapter 4
	Scatter plots of longest baselines
	Histograms of empirical distributions of baseline lengths
	Simulation study of cross-correlation coverage
	Introduction and setting
	Largest strongly connected component reduction factor
	Largest strongly connected component coverage factor
	Coverage factor
	Additional plots


	Bringing order to network centrality measures
	 Introduction
	 The centrality comparison curve
	Putting CCC to practice
	Conclusions & conjectures

	Appendices of Chapter 5
	Definitions of centrality measures
	Proof of properties of CCC and tie-breaking rule
	Details on the artificial networks used
	CCC for undirected graphs

	Open problems and suggestions for future research
	Ideas related to Chapter 2
	Ideas related to Chapter 3
	Ideas related to Chapter 4
	Ideas related to Chapter 5

	Bibliography
	List of publications
	Samenvatting
	Summary
	Acknowledgements
	Curriculum vitæ

